What line? did you mean to add a picture?
Answer:
So Philip made 5 bracelets and 4 necklaces.
Step-by-step explanation:
Let x = number of bracelets and y = number of necklaces.
Since we have a total of 9 bracelets and necklaces,
x + y = 9 (1)
Also, we have 8 inches of cord for each bracelet and 20 inches of cord for each necklace, then the total length for the bracelet is 8x and that for the necklace is 20y.
So, the total length for both is 8x + 20y. Since the total length of cord used is 120 inches,
8x + 20y = 120 (2)
Simplifying it we have
2x + 5y = 30 (3).
Writing equations (1) and (3) in matrix form, we have
![\left[\begin{array}{ccc}1&1\\2&5\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}9\\30\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C2%265%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%5C%5C30%5Cend%7Barray%7D%5Cright%5D)
Using Cramer's rule to solve for x and y,
![x = det \left[\begin{array}{ccc}9&1\\30&5\end{array}\right] /det \left[\begin{array}{ccc}1&1\\2&5\end{array}\right] \\](https://tex.z-dn.net/?f=x%20%3D%20det%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%261%5C%5C30%265%5Cend%7Barray%7D%5Cright%5D%20%2Fdet%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C2%265%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
x = (9 × 5 - 30 × 1) ÷ (1 × 5 - 1 × 2)
x = (45 - 30) ÷ (5 - 2)
x = 15 ÷ 3
x = 5
![y = det \left[\begin{array}{ccc}1&9\\2&30\end{array}\right] /det \left[\begin{array}{ccc}1&1\\2&5\end{array}\right] \\](https://tex.z-dn.net/?f=y%20%3D%20det%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%269%5C%5C2%2630%5Cend%7Barray%7D%5Cright%5D%20%2Fdet%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C2%265%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
y = (30 × 1 - 9 × 2) ÷ (1 × 5 - 1 × 2)
y = (30 - 18) ÷ (5 - 2)
y = 12 ÷ 3
y = 4
So Philip made 5 bracelets and 4 necklaces.
Answer:
10
Step-by-step explanation:

For x=2, this is ...
5·2 = 10
Answer :Plotting the points into the coordinate plane gives us an observation that this quadrilateral with vertices d(0,0), i(5,5) n(8,4) g(7,1) is a KITE, as shown in figure a.
Step-by-step explanation:
Considering the quadrilateral with vertices
d(0,0)
i(5,5)
n(8,4)
g(7,1)
Plotting the points into the coordinate plane gives us an observation that this quadrilateral with vertices d(0,0), i(5,5) n(8,4) g(7,1) is a KITE, as shown in figure a.
From the figure a, it is clear that the quadrilateral has
Two pairs of sides
Each pair having two equal-length sides which are adjacent
The angles being equal where the two pairs meet
Diagonals as shown in dashed lines cross at right angles, and one of the diagonals does bisect the other - cuts equally in half
Please check the attached figure a.
Answer:
m∡1 + m∡2 = 180
Step-by-step explanation:
m∡1 + m∡2 = 180
This is because supplementary means they add up to 180°.