Answer:
The planes’ acceleration from A to B is 500m/s^2
Explanation:
Given that the initial velocity u is 8000m/s
and also given the final velocity v=10,000 m/s
the time taken to move from A to B = 40 second
The acceleration is defined as the rate of change of velocity with time
we know that the expression for acceleration is given as
a=(v-u)/t
substituting our given data into the expression for a we have
a=(10000-8000)/40
a=2000/40
a=500m/s^2
The planes’ acceleration from A to B is 500m/s^2
Explanation:
(a) Formula to calculate the density is as follows.

= 
= 
Now, calculate the charge as follows.

= 
=
C
or, = 101.06 nC
(b) For r = 6.50 cm, the value of charge will be calculated as follows.

= 
= 7.454 
Answer:
Speed will be equal to 1.40 m/sec
Explanation:
Mass of the rubber ball m = 5.24 kg = 0.00524 kg
Spring is compressed by 5.01 cm
So x = 5.01 cm = 0.0501 m
Spring constant k = 8.08 N/m
Frictional force f = 0.031 N
Distance moved by ball d = 15.8 cm = 0.158 m
Energy gained by spring

Energy lost due to friction

So remained energy to move the ball = 0.0101 - 0.0048 = 0.0052 J
This energy will be kinetic energy


v = 1.40 m/sec
Answer:
1
Explanation: that is the ratio
X=1/2 at^2
3.1=1/2 a *0.64
a=9.68
v=at
v=0.8*9.6875=7.75