Answer: The light bends because light travels fast but it slows down in a denser medium. For example light refracts in water or it bends after passing through air. When light passes through air ( a less dense medium ) then through water ( a more dense medium ) the beam of light bends because light travels more slowly in a denser medium then it picks up its pace again once it passes. The density of the substance determines how much the light is refracted. I hope this makes sense and I hope this answered your question!! :)
Answer: Real image
Explanation:
converging lens will only produce a real image if the object is located beyond the focal point (i.e., more than one focal length away).
2 pounds = 9 burgers figure out ow many 9's you can get out of 100: 100/9=11 but that only makes 99 you need 100 so we would add another one making 12. now multiply 12 by 2: 12·2=24. You would need 24 pounds of meet :)
Answer:
3.25 × 10^7 m/s
Explanation:
Assuming the electrons start from rest, their final kinetic energy is equal to the electric potential energy lost while moving through the potential difference (ΔV)
Ek = 1/2 mv2 = qΔV .................. 1
Given that V is the electron speed in m/s
Charge of electron = 1.60217662 × 10-19 coulombs
Mass of electron = 9.109×10−31 kilograms
ΔV = 3.0kV = 3000V
Make V the subject of the formula in eqaution 1
V = sqr root 2qΔV/m
V = 2 × 1.60217662 × 10-19 × 3000 / 9.109×10−31
V = 3.25 × 10^7 m/s
Answer:
Option 4
Explanation:
During heating actually heat transfer takes place from a body at higher temperature to a body at lower temperature and the heat transfer takes place until both attain the same temperature
Therefore heat transfer depends on the temperature of the systems
Now while comparing the thermal energies of the systems, if both the systems have same mass then the system which is at higher temperature has greater thermal energy when compared to the system which is at lower temperature
So in this case assuming that both the systems have same mass then the energy will leave the system with greater thermal energy and go into the system with less thermal energy as the system with greater thermal energy in this case will be at higher temperature and we are considering this assumption because thermal energy not only depends on temperature but also depends on mass of the system