The force result in stretching the spring 10.0 centimeters is 2.5N.
<h3>
What is Hooke's law?</h3>
If a spring is stretched from its equilibrium position, then a force with magnitude proportional to the increase in length from the equilibrium length is pulling each end.
F = kx
where k is the proportionality constant called the spring constant or force constant.
Up to a point, the elongation of a spring is directly proportional to the force applied to it. Once you extend the spring more than 10.0 centimeters, however, it no longer follows that simple linear rule.
Let the spring constant be very low 0.04N/m
The force applied is
F = 10 cm / 0.04
F = 0.1 m / 0.04
F = 2.5 N
Thus, the force result in stretching the spring 10cm is 2.5 N.
Learn more about hooke's law.
brainly.com/question/13348278
#SPJ1
Answer:
0.0312J
Explanation:
Let x be the distance the staple moves:

And spring constant is 

Hence, the potential energy is 0.0312J
Answer:
Ultraviolet radiation would yield more electrical energy
Explanation:
The reason for the ultraviolet to generate more energy is that there would be getting more electrons per unit of time the photovoltaic cell, due to the higher frequency of the ultraviolet in comparison with the infrared radiation.
The infrared spectrum goes from 300 GHz (10^9 Hertz) to 400 THz or (10^12 Hertz).
The ultraviolet spectrum goes from 800 THz to 30.000 THz or (10^12 Hertz). This kind of radiation is responsible for skin burn from the sun and it´s the “ most usable” part from the sunlight in a photovoltaic cell.
Neap tides occur at or immediately after the First Quarter
and Third Quarter moon phases. At those times, the moon
is 'to the side' of the Earth. I mean, the sun, Earth, and Moon
make a right angle, with Earth at the vertex.
Initial speed, u = 15 m/s
Final speed, v = 10 m/s
Distance traveled, s = 6.0 m
The acceleration, a, is determined from
u² + 2as = v²
(15 m/s)² + 2*(a m/s²)*(6.0 m) = (10 m/s)²
225 + 12a = 100
12a = -125
a = -10.4167 m/s²
The time, t, for the velocity to change from 15 m/s to 10 m/s is given by
(10 m/s) = (15 m/s) - (10.4167 m/s²)*(t s)
10 = 15 - 10.4167t
t = 0.48 s
The average speed is
(6.0 m)/(0.48 s) = 12.5 m/s
Answer: 12.5 m/s