Answer:
A)0.00022s b)40363.6N c) 0.025m/s
Explanation:
Mass = 24g = 0.024kg, distance though the target = thickness of the target = 25cm = 0.25m
Initial speed of the bullet = 1300m/s, final speed = 930m/s
Using equation of motion
Distance = 1/2(vf+vi)*t (time in seconds)
t = 0.25*2/(1300+930) = 0.00022s
B) force exerted on the body
F = ma = m* (vf-vi)/t = 0.024*(930-1300)/0.00022
F = -40363N, it is negative because the body decelerated during this motion
C) using law of conservation of momentum,
M1*U1+ M2*U2(M2and U1 are the mass and initial speed of the body) = M1V1+ M2V2
The target was at rest so initial speed U2 = 0
0.024*1300 + 360*0 = 0.024*930 + 360*V2
31.2 = 22.32+360*V2
31.2-22.33 = 360*V2
V2 = 8.88/360 = 0.025m/s
Answer:
The surface gravity g of the planet is 1/4 of the surface gravity on earth.
Explanation:
Surface gravity is given by the following formula:

So the gravity of both the earth and the planet is written in terms of their own radius, so we get:


The problem tells us the radius of the planet is twice that of the radius on earth, so:

If we substituted that into the gravity of the planet equation we would end up with the following formula:

Which yields:

So we can now compare the two gravities:

When simplifying the ratio we end up with:

So the gravity acceleration on the surface of the planet is 1/4 of that on the surface of Earth.
Answer:

Explanation:
R = Horizontal range of projectile = 75 m
v = Velocity of projectile = 37 m/s
g = Acceleration due to gravity = 
Horizontal range is given by

The angle at which the arrow is to be released is
.
When you melt a solid the heat creates energy, when you heat up molecules they will move quicker and start to somewhat break apart into a liquid structure.