Answer:
<em>3^2 ; Option B</em>
Step-by-step explanation:
We are given the equation 3^ -6 * ( 3^4 / 3^0 )^2, which can be solved through the application of exponential rules;

<em>3^2 ; Option B</em>
Answer:
B
Step-by-step explanation:
Not all of the pairs represent the same ratio
Answer:
The18th term of the given sequence is -128
Explanation:
To find the 18th term of the sequence:
42, 32, 22, 12, ..., we need to find the nth term of the sequence first.
The nth term of a sequence is given be the formula:

Where a is the first term, and d is the common difference.
Here, a = 42, d = 32 - 42 = -10

To find the 18th terem, substitute n = 18 into the nth term
Answer: You need to show us the models.
Step-by-step explanation:
please
Answer:
Diameter of sphere = 18 cm
Step-by-step explanation:
<h2>Volume of Cylinder and Sphere:</h2><h3> Cylinder:</h3>
Diameter = 18 cm
r = 18÷ 2 = 9 cm
h = 12 cm

= π * 9 * 9 * 12 cm³
<h3>Sphere:</h3>

Solid cylinder is melted and turned into a solid sphere.
Volume of sphere = volume of cylinder

![\sf r^{3}= \dfrac{\pi *9*9*12*3}{4*\pi }\\\\ r^{3}=9 * 9 *3 *3\\\\\\r = \sqrt[3]{9*9*9}\\\\ r = 9 \ cm\\\\diameter = 9*2\\\\\boxed{diameter \ of \ sphere = 18 \ cm}](https://tex.z-dn.net/?f=%5Csf%20r%5E%7B3%7D%3D%20%5Cdfrac%7B%5Cpi%20%2A9%2A9%2A12%2A3%7D%7B4%2A%5Cpi%20%7D%5C%5C%5C%5C%20%20r%5E%7B3%7D%3D9%20%2A%209%20%2A3%20%2A3%5C%5C%5C%5C%5C%5Cr%20%3D%20%5Csqrt%5B3%5D%7B9%2A9%2A9%7D%5C%5C%5C%5C%20r%20%3D%209%20%5C%20cm%5C%5C%5C%5Cdiameter%20%3D%209%2A2%5C%5C%5C%5C%5Cboxed%7Bdiameter%20%5C%20of%20%5C%20%20sphere%20%3D%2018%20%5C%20cm%7D)