- To divide the triangles into these regions, you should construct the <u>perpendicular bisector</u> of each segment.
- These perpendicular bisectors intersect and divide each triangle into three regions.
- The points in each region are those closest to the vertex in that <u>region</u>.
<h3>What is a triangle?</h3>
A triangle can be defined as a two-dimensional geometric shape that comprises three (3) sides, three (3) vertices and three (3) angles only.
<h3>What is a line segment?</h3>
A line segment can be defined as the part of a line in a geometric figure such as a triangle, circle, quadrilateral, etc., that is bounded by two (2) distinct points and it typically has a fixed length.
<h3>What is a
perpendicular bisector?</h3>
A perpendicular bisector can be defined as a type of line that bisects (divides) a line segment exactly into two (2) halves and forms an angle of 90 degrees at the point of intersection.
In this scenario, we can reasonably infer that to divide the triangles into these regions, you should construct the <u>perpendicular bisector</u> of each segment. These perpendicular bisectors intersect and divide each triangle into three regions. The points in each region are those closest to the vertex in that <u>region</u>.
Read more on perpendicular bisectors here: brainly.com/question/27948960
#SPJ1
The dimensions of the prism can be 2x, 2x+3 and x+6.
We first factor out the GCF of the trinomial. The GCF of the coefficients is 2. Each term has an x in common as well, so the GCF is 2x.
Factoring out the 2x, we have
2x(2x²+15x+18).
To factor the remaining trinomial, we find factors of 2*18=36 that sum to 15. 12*3 = 36 and 12+3 = 15. We split up 15x into 12x and 3x:
2x(2x²+12x+3x+18)
Now we group together the first two terms in parentheses and the last two:
2x((2x²+12x)+(3x+18))
Factor out the GCF of the first group:
2x(2x(x+6)+(3x+18))
Factor out the GCF of the second group:
2x(2x(x+6)+3(x+6))
Factoring out what these have in common,
2x(x+6)(2x+3)
The graph graphed is y=1/2x
so
y=1/2x and y=-x+6
y=y so
1/2x=-x+6
times 2 both sides
x=-2x+12
add 2x both sides
3x=12
x=4
sub back
y=1/2x
y=1/2(4)
y=2
(4,2) is the solution
Answer:
Step-by-step explanation:
<h3>Given expression</h3>
<h3>Simplify the expression in steps as below</h3>
Used properties in solution process: