Answer:
7392
Step-by-step explanation:
just divide 5544÷.75 on a calculator however you want to do it than you will get 7392
(-5x ⁵+14)-(11x ²+1+11x ⁵)
Like terms: -5x ⁵-11x ⁵ = -16x ⁵
Like terms also: 14-1 = 13
Simplified all together: -16x ⁵ - 11x ²+ 13
(Always put highest degree first)
P(A|B)<span>P(A intersect B) = 0.2 = P( B intersect A)
</span>A) P(A intersect B) = <span>P(A|B)*P(B)
Replacing the known vallues:
0.2=</span><span>P(A|B)*0.5
Solving for </span><span>P(A|B):
0.2/0.5=</span><span>P(A|B)*0.5/0.5
0.4=</span><span>P(A|B)
</span><span>P(A|B)=0.4
</span>
B) P(B intersect A) = P(B|A)*P(A)
Replacing the known vallues:
0.2=P(B|A)*0.6
Solving for P(B|A):
0.2/0.6=P(B|A)*0.6/0.6
2/6=P(B|A)
1/3=P(B|A)
P(B|A)=1/3
Answer:
Width = 30
Step-by-step explanation:
Area = 18x * 10y = 180xy
Length = 6xy
Width = ?
Since the shape of the office complex is a rectangle,
Area of a rectangle = length × width
180xy = 6xy × width
Width = 180xy / 6xy
Width = 30
Answer:
Step-by-step explanation:
Average Temperatures Suppose the temperature (degrees F) in a river at a point x meters downstream from a factory that is discharging hot water into the river is given by
T(x) = 160-0.05x^2
a. [0, 10]
For x = 0
T(0) = 160 - 0.05 × 0^2
T(0) = 160
For x = 10
T(10) = 160 - 0.05 × 10^2
T(10) = 160 - 5 = 155
The average temperature
= (160 + 155)/2 = 157.5
b. [10, 40]
For x = 10
T(10) = 160 - 0.05 × 10^2
T(10) = 160 - 5 = 155
For x = 40
T(10) = 160 - 0.05 × 40^2
T(10) = 160 - 80 = 80
The average temperature
= (80 + 155)/2 = 117.5
c. [0, 40]
For x = 0
T(0) = 160 - 0.05 × 0^2
T(0) = 160
For x = 40
T(10) = 160 - 0.05 × 40^2
T(10) = 160 - 80 = 80
The average temperature
= (160 + 80)/2 = 120