Answer:
A
Step-by-step explanation:
So we have the equation:

First, let's subtract 16 from both sides:

Now, let's divide both sides by 3:

Remember that with fractional exponents, we can move the denominator into the root position. Therefore:
![(\sqrt[3]{x-4})^4=16](https://tex.z-dn.net/?f=%28%5Csqrt%5B3%5D%7Bx-4%7D%29%5E4%3D16)
Let's take the fourth root of both sides. Since we're taking an even root, make sure to have the plus-minus symbol!
![\sqrt[3]{x-4} =\pm 2](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx-4%7D%20%3D%5Cpm%202)
Cube both sides. Since we're cubing, the plus-minus stays.

Add 4 to both sides.

Calculator:

So, our answer is A.
And we're done!
Answer:
(b/2)^2
Step-by-step explanation:
1. Supplementary
2. Complementary
3. Adjacent angles
4. Vertically opposite angles
Hope it helps. Please mark brainliest.
Answer:
(-4, -3), (4, -1), (8, 0), (12, 1)
Step-by-step explanation:
The x- and corresponding y-values are listed in the table. Put each pair in parentheses, <em>x-value first</em>. (That is an <em>ordered pair</em>.)
(x, y) = (-4, -3) . . . . from the first table entry
(x, y) = (4, -1) . . . . from the second table entry
(x, y) = (8, 0) . . . . from the third table entry
(x, y) = (12, 1) . . . . from the last table entry