Answer:
.
Step-by-step explanation:
Step One: Simplify the square roots.
.
The square root of 8
can be simplified as the product of an integer and the square root of 2:
.
As a result,
.
Step Two: Expand the product of the two binomials.
is the product of two binomials:
- Binomial One:
. - Binomial Two:

Start by applying the distributive law to the first binomial. Multiply each term in the first binomial (without brackets) with the second binomial (with brackets)
![({\bf 8} - {\bf \sqrt{2}}) \cdot {(2 + 2\; \sqrt{2})}\\= [{\bf 8} \cdot {(2 + 2\; \sqrt{2})}] - [{\bf \sqrt{2}} \cdot {(2 + 2\; \sqrt{2})}]](https://tex.z-dn.net/?f=%28%7B%5Cbf%208%7D%20-%20%7B%5Cbf%20%5Csqrt%7B2%7D%7D%29%20%5Ccdot%20%7B%282%20%2B%202%5C%3B%20%5Csqrt%7B2%7D%29%7D%5C%5C%3D%20%5B%7B%5Cbf%208%7D%20%5Ccdot%20%7B%282%20%2B%202%5C%3B%20%5Csqrt%7B2%7D%29%7D%5D%20-%20%5B%7B%5Cbf%20%5Csqrt%7B2%7D%7D%20%5Ccdot%20%7B%282%20%2B%202%5C%3B%20%5Csqrt%7B2%7D%29%7D%5D)
Now, apply the distributive law once again to terms in the second binomial.
.
Step Three: Simplify the expression.
The square of a square root is the same as the number under the square root. For example,
.
.
Combine the terms with the square root of two and those without the square root of two:
.
Factor the square root of two out of the second term:
.
Combining the steps:
![(8 - \sqrt{2}) \cdot (2 + 2\; \sqrt{2})\\= [8 \cdot (2 + 2\; \sqrt{2})] - [\sqrt{2} \cdot (2 + 2\; \sqrt{2})]\\= [8 \times 2 + 8 \times 2\;\sqrt{2}] - [\sqrt{2} \times 2 + \sqrt{2} \times 2 \;\sqrt{2}]\\= [16 + 16 \;\sqrt{2}] - [2 \;\sqrt{2} + 2 \times (\sqrt{2})^{2}]\\= [16 + 16 \;\sqrt{2}] - [2 \;\sqrt{2} + 2 \times 2]\\= [16 + 16 \;\sqrt{2}] - [2 \;\sqrt{2} + 4]\\= 16 + 16\;\sqrt{2} - 2\; \sqrt{2} - 4\\= (16 - 4) + (16 \; \sqrt{2} - 2\; \sqrt{2})\\](https://tex.z-dn.net/?f=%288%20-%20%5Csqrt%7B2%7D%29%20%5Ccdot%20%282%20%2B%202%5C%3B%20%5Csqrt%7B2%7D%29%5C%5C%3D%20%5B8%20%5Ccdot%20%282%20%2B%202%5C%3B%20%5Csqrt%7B2%7D%29%5D%20-%20%5B%5Csqrt%7B2%7D%20%5Ccdot%20%282%20%2B%202%5C%3B%20%5Csqrt%7B2%7D%29%5D%5C%5C%3D%20%5B8%20%5Ctimes%202%20%2B%208%20%5Ctimes%202%5C%3B%5Csqrt%7B2%7D%5D%20-%20%5B%5Csqrt%7B2%7D%20%5Ctimes%202%20%2B%20%5Csqrt%7B2%7D%20%5Ctimes%202%20%5C%3B%5Csqrt%7B2%7D%5D%5C%5C%3D%20%5B16%20%2B%2016%20%5C%3B%5Csqrt%7B2%7D%5D%20-%20%5B2%20%5C%3B%5Csqrt%7B2%7D%20%2B%202%20%5Ctimes%20%28%5Csqrt%7B2%7D%29%5E%7B2%7D%5D%5C%5C%3D%20%5B16%20%2B%2016%20%5C%3B%5Csqrt%7B2%7D%5D%20-%20%5B2%20%5C%3B%5Csqrt%7B2%7D%20%2B%202%20%5Ctimes%202%5D%5C%5C%3D%20%5B16%20%2B%2016%20%5C%3B%5Csqrt%7B2%7D%5D%20-%20%5B2%20%5C%3B%5Csqrt%7B2%7D%20%2B%204%5D%5C%5C%3D%2016%20%2B%2016%5C%3B%5Csqrt%7B2%7D%20-%202%5C%3B%20%5Csqrt%7B2%7D%20-%204%5C%5C%3D%20%2816%20-%204%29%20%2B%20%2816%20%5C%3B%20%5Csqrt%7B2%7D%20-%202%5C%3B%20%5Csqrt%7B2%7D%29%5C%5C)
.