Answer:
The correct answer is
d. Sampling Interval = Population size ÷ Sample size.
Step-by-step explanation:
According to Johnstone et al., (2014) "<em>Once the auditor has determined the appropriate sample size, a sampling interval is calculated by dividing the population size by the sample size.</em>"
Thus,
Sampling Interval = Population size ÷ Sample size.
Johnstone, K., Rittenberg, L. and Gramling, A. (2014). <em>Auditing: A Risk-Based Approach to Conducting a Quality Audit.</em> Ninth Edition.
Answer:
2<3x>10
Step-by-step explanation:
2<3x>10
Answer:
28.26 inches
Step-by-step explanation:
Given
diameter (d) = 9 inches
circumference (c)
= π d
= 3.14 * 9
= 28.26 inches
L[ y(t) ] = Y(s)
L[ y' ] = sY-y(0) = sY-0 = sY
L[ y'' ] = s^2*Y - sy(0) - y'(0) = s^2*Y - 1
laplace trasform both sides
L[ y'' - 6y' + 9y ] = L[ t ]
= L[ y'' ] - 6 L[ y' ] + 9 L[ y ] = 1/s
= [ s^2*Y - 1 ] - 6[ sY ] + 9Y = 1/s
( s^2 - 6s + 9 ) Y - 1 = 1/s
⇒ ( s^2 - 6s + 9 ) Y = (1/s) + 1
⇒Y = [ 1 / ( s(s^2 - 6s + 9 ) ) ] + [ 1 / ( s^2 - 6s + 9 ) ]
Let inverse laplace trasform , find y(t) :
y(t) = L^(-1)[ Y(s) ] = L^(-1) { [ 1 / ( s(s^2 - 6s + 9 ) ) ] + [ 1 / ( s^2 - 6s + 9 ) ] }
= [ (1/3)*t*e^(3t) - (1/9)*e^(3t) + (1/9) ] + [ t*e^(3t) ]
= (4/3)*t*e^(3t) - (1/9)*e^(3t) + (1/9)
Answer:
let g be f(x)
g= <u>4</u><u>x</u><u> </u><u>-</u><u>3</u>
. 7
make x the subject
<u>7</u><u>g</u><u> </u><u>+</u><u>3</u><u>. </u> =x
4
the inverse function of f(x) = <u>7</u><u>x</u><u>+</u><u>3</u>
4