Answer:
The distance of the first bright fringe is given as 
The distance of the second dark fringe from the central bright fringe is given as 
Explanation:
From the question we are told that
The slit separation distance is 
The distance of the slit from the screen is 
The wavelength is 
For constructive interference to occur the distance between the two slit is mathematically represented as

Where m is the order of the fringe which has a value of 1 for first bright fringe
Substituting values


For destructive interference to occur the distance between the two slit is mathematically represented as
![Y_D = [n + \frac{1}{2} ] \frac{\lambda D}{d}](https://tex.z-dn.net/?f=Y_D%20%20%3D%20%20%5Bn%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%5D%20%5Cfrac%7B%5Clambda%20D%7D%7Bd%7D)
m = 2
so the formula to get the dark fringe is 
Now substituting values
![Y_D = [ 1 + \frac{1}{2} ] * \frac{633 *10^{-9} * 3.23 }{0.00115}](https://tex.z-dn.net/?f=Y_D%20%3D%20%5B%201%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%5D%20%2A%20%5Cfrac%7B633%20%2A10%5E%7B-9%7D%20%2A%203.23%20%7D%7B0.00115%7D)


This is because of of the heating effect of a current. The glow is a result of current passing through the filament. The current experiences resistance as a result heat is generated. When resistance is at zero, there potential differences is not needed hence temperature generated will be at a constant.
Answer:
the bar is the top and bottem. the nucleas in the middle and the Spiral arm is the last space
Explanation:
I'd say a weekly news magazine.