The amount of space an objective takes up measures by volume.
<u>Explanation:</u>
Volume is a proportion of the measure of space, unfilled column that a substance or an item takes up. The essential SI unit to volume denotes in the (cubic meter), yet volumes might be estimated in cubic centimetres, and fluids might be estimated in liters (L) or milli-liters (mL). How the volume of matter is estimated relies upon its state. The fluid's volume is estimated with an estimating holder, for example, an estimating cup or graduated chamber.
The gas volume relies upon the volume of its holder: gases able to occupy anything that space is accessible to them. The occupied space of a routinely molded strong can be determined from its measurements. For instance, the rectangle’s volume strong is the result of its width, length, and stature. The volume of a sporadically molded strong can be estimated by the uprooting technique.
Answer:
A) q = -8.488 cm
, B) m = 0.29
Explanation:
A) For this exercise in geometric optics, we will use the equation of the constructor
where p and q are the distance to the object and image, respectively and f is the focal length
in our case the distance the object is p = 29 cm the focal length of a diverging lens is negative and indicates that it is f = - 12 cm

we calculate

= - 0.1178
q = -8.488 cm
the negative sign indicates that the image is virtual
B) the magnification is given

we substitute
m =
m = 0.29
the positive sign indicates that the image is right
Answer:
m = 1.99 kg = 2 kg
Explanation:
The moment of inertia of a bicycle rim about it's center is given by the following formula:

where,
I = Moment of Inertia of the Bicycle Rim = 0.21 kg.m²
r = Radius of the Bicycle Rim = Diameter of the Bicycle Rim/2
r = 0.65 m/2 = 0.325 m
m = Mass of the Bicycle Rim = ?
Therefore,

<u>m = 1.99 kg = 2 kg</u>