Answer:
Explanation:
Given
Launch angle =u
Initial Speed is 
Horizontal acceleration is 
At maximum height velocity is zero therefore



Total time of flight 
During this time horizontal range is


For maximum range 

![\frac{\mathrm{d} R}{\mathrm{d} u}=\frac{2v_0^2}{g}\left [ \cos 2u-\frac{a}{g}\sin 2u\right ]=0](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cmathrm%7Bd%7D%20R%7D%7B%5Cmathrm%7Bd%7D%20u%7D%3D%5Cfrac%7B2v_0%5E2%7D%7Bg%7D%5Cleft%20%5B%20%5Ccos%202u-%5Cfrac%7Ba%7D%7Bg%7D%5Csin%202u%5Cright%20%5D%3D0)


(b)If a =10% g

thus 

The only correct statement on the list is choice-A./
The inner planets are usually rocky because the gravitational pull is stronger closer to the star or in this case the sun. The dust and rocky particles that are left over after a super nova or in a nebula will tend to orbit closer to a proto-star when a solar system is in its early days. In our solar system these planets are Mercury, Venus, Earth and Mars. Gases are less dense and will be less affected by the pull of gravity because rocky particles have more mass. The outer planets are gas giants formed from clouds of gas that would be further out in the spinning disk around a proto-star.
It’s measured in a reference frame that is usually the earth’s surface