In space we feel weightlessness because the earths gravity has less effect on us.The Earths gravitational attraction at those altitudes is only about 11% less than it is at the Earths surface. If you had a ladder that could reach as high as the the shuttles orbit, your weight would be 11% less at the top.
The absence of external forces will make the pucks move in the form of a uniform circular motion.
<h3>What is a circular motion?</h3>
It should be noted that a circular motion simply means the movement of an object along the circumference of the circle.
In this case, the absence of external forces will make the pucks move in the form of a uniform circular motion.
If the friction is absent, the pucks will continue to move on the same path due to the first law of Newton and the law of conversation of energy. In this case,the results will match the predictions until there's loss in energy.
Learn more about circular motion on:
brainly.com/question/106339
Answer:
1.59 seconds
12.3 meters
but if you are wise you will read the entire answer.
Explanation:
This is a good question -- if not a bit unusual. You should try and understand the details. It will come in handy.
Time
<u>Given</u>
a = 0 This is the critical point. There is no horizontal acceleration.
d = 20 m
v = 12.6 m/s
<u>Formula</u>
d = vi * t + 1/2at^2
<u>Solution</u>
Since the acceleration is 0, the formula reduces to
d = vi * t
20 = 12.6 * t
t = 20 / 12.6
t = 1.59 seconds.
It takes 1.59 seconds to hit the ground
Height of the building
<u>Givens</u>
t = 1.59 sec
vi = 0 Another critical point. The beginning speed vertically is 0
a = 9.8 m/s^2 The acceleration is vertical.
<u>Formula</u>
d = vi*t + 1/2 a t^2
<u>Solution</u>
d = 1/2 a*t^2
d = 1/2 * 9.8 * 1.59^2
d = 12.3 meters.
The two vi's are not to be confused. The horizontal vi is a number other other 0 (in this case 12.6 m/s horizontally)
The other vi is a vertical speed. It is 0.
Answer:
v = 3×10^8 m/s
s= 384,400 km= 3.84×10^8 m/s
t = ?
v = s/t = 2s/t
t = 2s/v
t = (2×3.84×10^8) ÷ 3×10^8
t = 2.56 seconds
Explanation:
Earth's moon is the brightest object in our
night sky and the closest celestial body. Its
presence and proximity play a huge role in
making life possible here on Earth. The moon's gravitational pull stabilizes Earth's wobble on its axis, leading to a stable climate.
The moon's orbit around Earth is elliptical. At perigee — its closest approach — the moon comes as close as 225,623 miles (363,104 kilometers). At apogee — the farthest away it gets — the moon is 252,088 miles (405,696
km) from Earth. On average, the distance fromEarth to the moon is about 238,855 miles (384,400 km). According to NASA , "That means 30 Earth-sized planets could fit in between Earth and the moon."
Answer:
Mechanical Advantage = Output Force/Input Force
Velocity Ratio = Driving Gear/Driven Gear
Explanation: