The perimeter is 36 yd.
We set up a proportion to represent this situation. We know that the ratio of the side to the perimeter is the same for every square. This means that the ratio of the first square, 2/8 is the same for the second one. We know that the side length is 9, which gives us:
2/8 = 9/x
Cross multiply:
2*x = 8*9
2x = 72
Divide both sides by 2:
2x/2 = 72/2
x = 36
Answer:
AY = 16
IY = 9
FG = 30
PA = 24
Step-by-step explanation:
<em>The </em><em>centroid </em><em>of the triangle </em><em>divides each median</em><em> at the ratio </em><em>1: 2</em><em> from </em><em>the base</em>
Let us solve the problem
In Δ AFT
∵ Y is the centroid
∵ AP, TI, and FG are medians
→ By using the rule above
∴ Y divides AP at ratio 1: 2 from the base FT
∴ AY = 2 YP
∵ YP = 8
∴ AY = 2(8)
∴ AY = 16
∵ PA = AY + YP
∴ AP = 16 + 8
∴ AP = 24
∵ Y divides TI at ratio 1: 2 from the base FA
∴ TY = 2 IY
∵ TY = 18
∴ 18 = 2
→ Divide both sides by 2
∴ 9 = IY
∴ IY = 9
∵ Y divides FG at ratio 1:2 from the base AT
∴ FY = 2 YG
∵ FY = 20
∴ 20 = 2 YG
→ Divide both sides by 2
∴ 10 = YG
∴ YG = 10
∵ FG = YG + FY
∴ FG = 10 + 20
∴ FG = 30