Answer: D - The electron will move in a counterclockwise circular path if viewed in the direction of the magnetic field.
Explanation:
When the electron enters the field at an angle to the field direction the resulting path of the electron will be helical. Such motion occurs above the poles of the Earth where charges particles from the Sun spiral through the Earth's field to produce the aurorae.
Magnetic force on an electron = BILsinØ = B[e/t][vt] = BevØ
where v is the electron velocity
In a magnetic field the force is always at right angles to the motion of the electron (Fleming's left hand rule) and so the resulting path of the electron is circular.
The force constant of the spring is approximately 24.038 newtons per meter.
As we are talking about Simple Harmonic Motion. In this exercise we need to determine the Spring Constant (
), in newtons per meter, from the equation of the Period (
), in seconds, which is described below:
(1)
Where
is the mass of the moving element, in kilograms.
If we know that
and
, then the spring constant of the spring is:




The force constant of the spring is approximately 24.038 newtons per meter.
Please see this question related to Simple Harmonic Motion for further details: brainly.com/question/17315536
"Energy and Momentum" is always conserved in an inelastic condition
Hope this helps!