The nuclear fuel cycle is the series of industrial processes which involve the production of electricity from uranium in nuclear power reactors.
Uranium is a relatively common element that is found throughout the world. It is mined in a number of countries and must be processed before it can be used as fuel for a nuclear reactor.
Fuel removed from a reactor, after it has reached the end of its useful life, can be reprocessed so that most is recycled for new fuel.
Answer:
1.41s
5.95m/s
0.2746m
Explanation:
The time period
T = 1/f
= 1/0.709s
= 1.41 seconds
We have
T = 2π√l/g
T² = 4π²l/g
g = 4π²l/T²
g = 4x3.14²x0.300/1.41²
g = 5.95m/s² this is the acceleration due to gravity.
Then the time period of the glide
T2 = 2π√m/k
Length of pendulum = l
Time period T
T2 = 2π√l/g
Then T1 = T2
2π√m/k = 2π√l/g
M/k = l/g
L = g.m/k
L = 5.95x0.450/9.75
L = 0.2746
This must be the length of the simple pendulum
Answer:
Explanation:
We shall apply the theory of
heat lost = heat gained .
heat lost by water = mass x specific heat x temperature diff
= .285 x 4190 x ( 75.2 - 32 ) = 51587.28 J
heat gained by ice to attain temperature of zero
= m x 2100 x 22.8 = 47880 m
heat gained by ice in melting = latent heat x mass
= 334000m
heat gained by water at zero to become warm at 32 degree
= m x 4190 x 32 = 134080 m
Total heat gained = 515960 m
So
515960 m = 51587.28
m = .1 kg
= 100 gm
Answer:
2,500,000 MJ (
)
Explanation:
According to the work-energy theorem:
The work done on an object is equal to the amount of energy transferred
In this problem, the energy transferred by the rocket is

Therefore, the work done must be equal to the energy transferred, therefore:

The FIRST statement on the list is the definition of momentum, so that's the one that must be true.