No, because the energy is the capacity for performing work. Gravity is the force that draws everything to the earth's center.
When you touch an object and heat flows OUT of it, INTO your finger, you say the object feels hot.
When you touch an object and heat flows INTO it, OUT of your finger, you say the object feels cold.
If the object has the same temperature as your finger ... <em>around the mid-90s</em> ... then no heat flows in or out of your finger when you touch the object, and the object doesn't feel hot or cold.
Answer:
Explanation:
Hi!
In order to obtain the Lagrangian of the system we must first write the Kinetic and Potential Energies. Lets orient our axes such that the axis of the cone coincide with the z axis. In cilindrical coordinates we have
- (1)
But, since the particle is constrained to move on the surface of the cilinder, we have the following relation between r and z:

or:
- (2)
and:
replacing (2) in (1) we obtain:
- (3)
Now the kinetic energy is given as:
- (4)
And the potential energy is given by:

So the Langrangian is given by:

And the equations of motion are:
For θ

For r

Obtained from the Euler-Langrange equations
Here the conserved quantity is given by the first equation of motion, namely:

Which is the magnitude of the angular momentum
Answer:
True
Explanation:
The products of a reaction are determined by the type of chemical reaction that are taking place. This is very true.
In chemical reactions, bonds are broken and atoms re-arranged to form new products.
- By virtue of this, we can predict and know the kind of permissible combinations that can take place.
- There are different kinds of chemical reaction.
- They are synthesis, decomposition, single displacement, double displacement reactions e.t.c
- Knowing these reactions gives insight into the likely products we can obtain.