Answer:
2.5 m/s
Explanation:
Mechanical energy is the sum of the potential and kinetic energy.
E = PE + KE
E = mgh + ½mv²
172.1 J = (7.26 kg) (9.8 m/s²) (2.1 m) + ½ (7.26 kg) v²
v = 2.5 m/s
Answer: The spring constant is K=392.4N/m
Explanation:
According to hook's law the applied force F will be directly proportional to the extension e produced provided the spring is not distorted
The force F=ke
Where k=spring constant
e= Extention produced
h=2m
Given that
e=20cm to meter 20/100= 0.2m
m=100g to kg m=100/1000= 0.1kg
But F=mg
Ignoring air resistance
assuming g=9.81m/s²
Since the compression causes the plastic ball to poses potential energy hence energy stored in the spring
E=1/2ke²=mgh
Substituting our values to find k
First we make k subject of formula
k=2mgh/e²
k=2*0.1*9.81*2/0.1²
K=3.921/0.01
K=392.4N/m
What happens is the potential value of the conductor decreases due to the presence of second conductor
as the capacitance is given by C = q/v
the value of v deceases as v-v1
thus the new capacitance is = C' = q/v-v1 thus the lowering of v increases the capacitance
A change in position with respect to a reference point is called motion
hope it helps...
Answer:
The dimension of the nullspace of T = 4
Explanation:
The rank/dimension theorem is explains that:
Suppose V and W are vector spaces over F, and T:V → W is linear. If V is finite dimensional, then
nullity(T) + rank(T) = dim(V).
rank(T) = dimension of T = dim(T) = dim(W) = 7
nullity(T) = dimension of the nullspace of T = dim(T) = ?
dim(V) = 11
nullity(T) = dim(V) - dim(T) = 11 - 7
nullity(T) = 4.