Kirchhoff's circuit laws are two equalities that deal with the current and potential difference (commonly known as voltage) in the lumped element model of electrical circuits. They were first described in 1845 by German physicist Gustav Kirchhoff. This generalized the work of Georg Ohm and preceded the work of Maxwell.
Answer:
W = 1222.4 J = 1.22 KJ
Explanation:
The work done on an object is the product of the force applied on it and the displacement it covers as a result of this force. It must be noted that the component of displacement in the direction of force should only be used. Hence, the work can be calculated as:
W = F d Cosθ
where,
W = Work Done = ?
F = Force Applied = 64 N
d = Distance Covered by Box = 19.1 m
θ = Angle between force and displacement = 0°
Therefore,
W = (64 N)(19.1 m)Cos 0°
<u>W = 1222.4 J = 1.22 KJ</u>
Answer:
Omqnp
Explanation:
I have done this before and got it correct
Explanation:
It is given that,
Mass of the woman, m₁ = 52 kg
Angular velocity, 
Mass of disk, m₂ = 118 kg
Radius of the disk, r = 3.9 m
The moment of inertia of woman which is standing at the rim of a large disk is :


I₁ = 790.92 kg-m²
The moment of inertia of of the disk about an axis through its center is given by :


I₂ =897.39 kg-m²
Total moment of inertia of the system is given by :


I = 1688.31 kg-m²
The angular momentum of the system is :



So, the total angular momentum of the system is 4980.5 kg-m²/s. Hence, this is the required solution.