Compute the work done on the table:
<em>W</em> = <em>Fd</em> = (320 N) (32 m) = 10,240 J
Divide this by the given time duration to get the power output:
<em>P</em> = <em>W</em>/∆<em>t</em> = (10,240 J) / (150 s) ≈ 63.3 W
Large AC motors (used in things like factory machines) work in a slightly different way: they pass alternating current through opposing pairs of magnets to create a rotating magnetic field, which "induces" (creates) a magnetic field in the motor's rotor, causing it to spin around.
Answer:
Vf = 210 [m/s]
Av = 105 [m/s]
y = 2205 [m]
Explanation:
To solve this problem we must use the following formula of kinematics.

where:
Vf = final velocity [m/s]
Vo = initial velocity = 0 (released from the rest)
g = gravity acceleration = 10 [m/s²]
t = time = 21 [s]
Vf = 0 + (10*21)
Vf = 210 [m/s]
Note: The positive sign for the gravity acceleration means that the object is falling in the same direction of the gravity acceleration (downwards)
The average speed is defined as the sum of the final speed plus the initial speed divided by two. (the initial velocity is zero)
Av = (210 + 0)/2
Av = 105 [m/s]
To calculate the distance we must use the following equation of kinematics

44100 = 20*y
y = 2205 [m]