Explanation:
The object is moving along the parabola y = x² and is at the point (√2, 2). Because the object is changing directions, it has a centripetal acceleration towards the center of the circle of curvature.
First, we need to find the radius of curvature. This is given by the equation:
R = [1 + (y')²]^(³/₂) / |y"|
y' = 2x and y" = 2:
R = [1 + (2x)²]^(³/₂) / |2|
R = (1 + 4x²)^(³/₂) / 2
At x = √2:
R = (1 + 4(√2)²)^(³/₂) / 2
R = (9)^(³/₂) / 2
R = 27 / 2
R = 13.5
So the centripetal force is:
F = m v² / r
F = m (5)² / 13.5
F = 1.85 m
Answer:
Radiation moves out of the microwave into waves causing heat.
Explanation:
Inside your microwave oven, electrical energy is transformed into EM energy in the magnetron. When the microwave photons interact with food, food molecules are physically agitated, transforming the EM energy into kinetic energy, or energy of movement .
Hope it helped!
Answer:
Check the explanation
Explanation:
Kindly check the attached image below to see the step by step explanation to the question above.
Changes in state of matter would be a physical change to whatever it is that you are changing so I think it would be B.Molecules because in order for something to change the molecules have to be moving apart from one another but I maybe wrong depending on what it is your looking at
<span>3.834 m/s.
In this problem we need to have a centripetal force that is at least as great as the gravitational attraction the object has. The equation for centripetal force is
F = mv^2/r
and the equation for gravitational attraction is
F = ma
Since m is the same in both cases, we can cancel it out and then set the equations equal to each other, so
a = v^2/r
Substitute the known values (radius is diameter/2) and solve for v
9.8 m/s^2 <= v^2/1.5 m
14.7 m^2/s^2 <= v^2
3.834057903 m/s <= v
So the minimum velocity needed is 3.834 m/s.</span>