Answer:
Any radical in the form can be written using a fractional exponent in the form . The relationship between and works for rational exponents that have a numerator of 1 as well. For example, the radical can also be written as , since any number remains the same value if it is raised to the first power.
Step-by-step explanation:
The answer would be 14,000,000.00
Answer:
Option B is correct .
Step-by-step explanation:
According to Question , both the graph have same shape . If we look at the the first graph it cuts x - axis at (0 , 2) and ( 0 , -2) . Hence x = 2 and -2 are the zeroes of the equation .
And ,the given function is ,
<u>Hence ,we can can see that x = </u><u> </u><u>2</u><u> </u><u>and</u><u> </u><u>(</u><u>-</u><u>2</u><u>)</u><u> </u><u>are</u><u> </u><u>the</u><u> </u><u>zeroes </u><u>of </u><u>graph</u><u>. </u><u> </u>
This implies that if we know the zeroes , we can frame the Equation.
On looking at second parabola , it's clear that cuts x - axis at ( 1, 0 ) and (-1,0). So , 1 and -1 are the zeroes of the quadratic equation . Let the function be g(x) . Here , a and ß are the zeroes.
<u>Hence </u><u>option </u><u>B</u><u> </u><u>is</u><u> </u><u>corre</u><u>ct</u><u> </u><u>.</u>
Your answer is: y=5
Here are the steps:
<span>4=2/9(4y-2)
=2/9(4y-2)=4
=9*</span>2/9(4y-2)=4*9
=2(4y-2)=36
=2(4y-2)/2=36/2
=4y-2=18
=4y-2+2=18+2
=4y=20
=4y/4=20/4
=y=5
Answer:
i think its 7n/4
Step-by-step explanation: