Answer:
the stem, but if its more specific xylem cells
Answer:
Elements in the same period have same number of electronic shell and electron is increased by one in every coming element with in same electronic shell.
Explanation:
Consider the second period of periodic table. This period consist of eight elements lithium, beryllium, boron, carbon, nitrogen, oxygen, fluorine and neon.
Electronic configuration of lithium:
Li₃ = [He] 2s¹
Electronic configuration of beryllium:
Be₄ = [He] 2s²
Electronic configuration of boron:
B₅ = [He] 2s² 2p¹
Electronic configuration of carbon:
C₆ = [He] 2s² 2p²
Electronic configuration of nitrogen:
N₇ = [He] 2s² 2p³
Electronic configuration of oxygen:
O₈ = [He] 2s² 2p⁴
Electronic configuration of fluorine:
F₉ = [He] 2s² 2p⁵
Electronic configuration of neon:
Ne₁₀ = [He] 2s² 2p⁶
All these elements present in same period having same electronic shell and number of electron increased by 1.
Answer:
- <em>The pH of the solution is </em><u><em>7</em></u>
Explanation:
<em>The pH</em> is a measure of the acidity of the solutions. It is defined as the negative logarithm of the molar concentration of hydrogen ions (H⁺).
<em>The hydrogen ion concentration of this solution is 1 × 10⁻⁷ M.</em>
Hence:
- pH = - log (1 × 10⁻⁷) = - (-7) = 7
This pH corresponds to a neutral solution (neither acid nor alkaline).
You should remember this relation bwtween pH and acidity/alkaliinity:
- Low pH (0.0 or close) corresponds to strong acids
- HIgh pH (14.0 or close) corresponds to strong bases
- Acids have pH between 0.0 and 7.0
- Bases have pH between 7.0 and 14.0
Answer:
A). The complementary shapes of an enzyme and a substrate.
Explanation:
The Lock-and-key mechanism was proposed by Emil Fischer for the first time and characterized as the metaphor which helps in elucidating the specificity of the enzymatic reactions. In this metaphor, the lock is described as the enzyme while 'key' is characterized as the substrate which the enzyme acts upon. If the key is not appropriately sized, it will not fit into the active site i.e. the keyhole of the lock or enzyme and reaction will not take place. Thus, <u>option A</u> is the correct answer.