I believe it is NaCl(aq) + H2O
Charge can be transferred from one object to another in three way conduction, polarization, and friction
Whenever electrons are transferred between objects, neutral matter becomes charged and three ways this can occur are referred to as conduction, polarization, and friction conduction means when there is direct contact between materials that differ in their ability to give up or accept electrons when two different materials are rubbed together, there is a transfer of electrons from one material to the other material and this causes one object to become positively charged (the electron loser) and the other object to become negatively charged (the electron gainer)
Here given object is water + balloon; balloon + wall; tape then you rub a balloon against your clothes and it sticks to the wall, you are adding a surplus of electrons (negative charges) to the surface of the balloon the wall is now more positively charged than the balloon and we tested the conductivity of deionized water positively charged
Know more about charge transferred one object to another
brainly.com/question/28661233
#SPJ1
Answer:
The sediments accumulating on and around mid-ocean ridges are mostly formed from the calcareous and siliceous tests of pelagic organisms. This research is concerned with understanding how the rate of sediment supply varies from place to place due to varied productivity of pelagic organisms, how the sediments accumulate on the complex topography of a mid-ocean ridge, and with using the sediments to study mid-ocean ridge processes such as faulting and volcanism.
Sediment transport and accumulation
When pelagic materials reach the seafloor, they are redistributed by bottom currents and by sedimentary flows. This work studied the form of the accumulation using sediment profiler records collected with a Deep Tow system from the Scripps Institution of Oceanography deployed over the Mid-Atlantic Ridge in the early 1970s. The records showed that both sets of transport processes are important. The shapes of deposits were studied to see to what extent they conform to the diffusion transport model - many deposits have parabolic surfaces, which are the steady state forms expected from the diffusion transport model under boundary conditions of constant input or output flux to basins.