Answer:
100.8 °C
Explanation:
The Clausius-clapeyron equation is:
-Δ
Where 'ΔHvap' is the enthalpy of vaporization; 'R' is the molar gas constant (8.314 j/mol); 'T1' is the temperature at the pressure 'P1' and 'T2' is the temperature at the pressure 'P2'
Isolating for T2 gives:

(sorry for 'deltaHvap' I can not input symbols into equations)
thus T2=100.8 °C
Because of the sea waters density. If an object is less dense than the water it would not float
Explanation:
Br2 + S2O32- + 5H2O –> 2Br- + 2SO4 + 10H+ + 6e
Answer:
ScCl₂
General Formulas and Concepts:
<u>Chemistry</u>
- Reading a Periodic Table
- Reaction Prediction
- Determining Chemical Compounds
Explanation:
<u>Step 1: Define</u>
Scandium (II)
Cl
<u>Step 2: Determine Charges</u>
Sc²⁺
Cl⁻
<u>Step 3: Predict Compound</u>
<em>We need to balance out the charges so the overall charge is 0.</em>
ScCl₂
<u>Step 4: Reaction</u>
RxN: Sc²⁺ + Cl₂ → ScCl₂