Answer:
A
The nuber of each one should be same
Answer : The half life of 28-Mg in hours is, 6.94
Explanation :
First we have to calculate the rate constant.
Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = time passed by the sample = 48.0 hr
a = initial amount of the reactant disintegrate = 53500
a - x = amount left after decay process disintegrate = 53500 - 10980 = 42520
Now put all the given values in above equation, we get


Now we have to calculate the half-life.



Therefore, the half life of 28-Mg in hours is, 6.94
Answer:
The standard enthalpy change for the reaction at
is -2043.999kJ
Explanation:
Standard enthalpy change (
) for the given reaction is expressed as:
![\Delta H_{rxn}^{0}=[3mol\times \Delta H_{f}^{0}(CO_{2})_{g}]+[4mol\times \Delta H_{f}^{0}(H_{2}O)_{g}]-[1mol\times \Delta H_{f}^{0}(C_{3}H_{8})_{g}]-[5mol\times \Delta H_{f}^{0}(O_{2})_{g}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%5E%7B0%7D%3D%5B3mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28CO_%7B2%7D%29_%7Bg%7D%5D%2B%5B4mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28H_%7B2%7DO%29_%7Bg%7D%5D-%5B1mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28C_%7B3%7DH_%7B8%7D%29_%7Bg%7D%5D-%5B5mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28O_%7B2%7D%29_%7Bg%7D%5D)
Where
refers standard enthalpy of formation
Plug in all the given values from literature in the above equation:
![\Delta H_{rxn}^{0}=[3mol\times (-393.509kJ/mol)]+[4mol\times (-241.818kJ/mol)]-[1mol\times (-103.8kJ/mol)]-[5mol\times (0kJ/mol)]=-2043.999kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%5E%7B0%7D%3D%5B3mol%5Ctimes%20%28-393.509kJ%2Fmol%29%5D%2B%5B4mol%5Ctimes%20%28-241.818kJ%2Fmol%29%5D-%5B1mol%5Ctimes%20%28-103.8kJ%2Fmol%29%5D-%5B5mol%5Ctimes%20%280kJ%2Fmol%29%5D%3D-2043.999kJ)
What do the bubbles indicate? <span>chemical reaction with HCl, release of H2(g)
</span>
Where the substances are located in relation to one another on the periodic table and the activity series? <span>A is above B on the periodic table but B is above A in the activity series.
</span>
The name of the family the substances could be in ? <span>alkaline earth, alkali metals. Either group 1 or group 2.
</span>
<span>What substance will have a larger atomic radius? B</span>
What substance will have a larger ionization energy? A