4 consecutive odd numbers....x, x + 2, x + 4, x + 6
2(x + x + 2) = 3(x + 4 + x + 6) - 40
2(2x + 2) = 3(2x + 10) - 40
4x + 4 = 6x + 30 - 40
4x + 4 = 6x - 10
4x - 6x = -10 - 4
-2x = - 14
x = -14/-2
x = 7
x + 2 = 7 + 2 = 9
x + 4 = 7 + 4 = 11
x + 6 = 7 + 6 = 13
ur numbers are : 7,9,11,13 <==
Answer: 2,72 and 72, 2
Step-by-step explanation:
5(n-2) = 5n -10
5n - 10 = 5n-10
ALL REAL NUMBERS
Answer:
m =64/3
Step-by-step explanation:
m=21 1/3 m=21.3
Answer:
The statement is true is for any
.
Step-by-step explanation:
First, we check the identity for
:



The statement is true for
.
Then, we have to check that identity is true for
, under the assumption that
is true:
![(1^{2}+2^{2}+3^{2}+...+k^{2}) + [2\cdot (k+1)-1]^{2} = \frac{(k+1)\cdot [2\cdot (k+1)-1]\cdot [2\cdot (k+1)+1]}{3}](https://tex.z-dn.net/?f=%281%5E%7B2%7D%2B2%5E%7B2%7D%2B3%5E%7B2%7D%2B...%2Bk%5E%7B2%7D%29%20%2B%20%5B2%5Ccdot%20%28k%2B1%29-1%5D%5E%7B2%7D%20%3D%20%5Cfrac%7B%28k%2B1%29%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29-1%5D%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29%2B1%5D%7D%7B3%7D)
![\frac{k\cdot (2\cdot k -1)\cdot (2\cdot k +1)}{3} +[2\cdot (k+1)-1]^{2} = \frac{(k+1)\cdot [2\cdot (k+1)-1]\cdot [2\cdot (k+1)+1]}{3}](https://tex.z-dn.net/?f=%5Cfrac%7Bk%5Ccdot%20%282%5Ccdot%20k%20-1%29%5Ccdot%20%282%5Ccdot%20k%20%2B1%29%7D%7B3%7D%20%2B%5B2%5Ccdot%20%28k%2B1%29-1%5D%5E%7B2%7D%20%3D%20%5Cfrac%7B%28k%2B1%29%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29-1%5D%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29%2B1%5D%7D%7B3%7D)
![\frac{k\cdot (2\cdot k -1)\cdot (2\cdot k +1)+3\cdot [2\cdot (k+1)-1]^{2}}{3} = \frac{(k+1)\cdot [2\cdot (k+1)-1]\cdot [2\cdot (k+1)+1]}{3}](https://tex.z-dn.net/?f=%5Cfrac%7Bk%5Ccdot%20%282%5Ccdot%20k%20-1%29%5Ccdot%20%282%5Ccdot%20k%20%2B1%29%2B3%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29-1%5D%5E%7B2%7D%7D%7B3%7D%20%3D%20%5Cfrac%7B%28k%2B1%29%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29-1%5D%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29%2B1%5D%7D%7B3%7D)

![(2\cdot k +1)\cdot [k\cdot (2\cdot k -1)+3\cdot (2\cdot k +1)] = (k+1) \cdot (2\cdot k +1)\cdot (2\cdot k +3)](https://tex.z-dn.net/?f=%282%5Ccdot%20k%20%2B1%29%5Ccdot%20%5Bk%5Ccdot%20%282%5Ccdot%20k%20-1%29%2B3%5Ccdot%20%282%5Ccdot%20k%20%2B1%29%5D%20%3D%20%28k%2B1%29%20%5Ccdot%20%282%5Ccdot%20k%20%2B1%29%5Ccdot%20%282%5Ccdot%20k%20%2B3%29)



Therefore, the statement is true for any
.