Yes, it matters, if it is recurring or simply just irrational <span />
Answer:
The maximum volume of the open box is 24.26 cm³
Step-by-step explanation:
The volume of the box is given as
, where
and
.
Expand the function to obtain:

Differentiate wrt x to obtain:

To find the point where the maximum value occurs, we solve



Discard x=3.54 because it is not within the given domain.
Apply the second derivative test to confirm the maximum critical point.
, 
This means the maximum volume occurs at
.
Substitute
into
to get the maximum volume.

The maximum volume of the open box is 24.26 cm³
See attachment for graph.
Answer:
9
Step-by-step explanation:
3/5 * 15
Rewriting as
3 * 15/5
3 * 3
9
The altitude's slope must be perpendicular to that of the line.
The slope of segment BC is 2/5. The slope of the altitude must be perpendicular to 2/5. Since the negative reciprocal of 2/5 is -5/2, then the slope of the altitude is -5/2.
Answer:
Probability of stopping the machine when
is 0.0002
Probability of stopping the machine when
is 0.0013
Probability of stopping the machine when
is 0.0082
Probability of stopping the machine when
is 0.0399
Step-by-step explanation:
There is a random binomial variable
that represents the number of units come off the line within product specifications in a review of
Bernoulli-type trials with probability of success
. Therefore, the model is
. So:
![P (X < 9) = 1 - P (X \geq 9) = 1 - [{15 \choose 9} (0.91)^{9}(0.09)^{6}+...+{ 15 \choose 15}(0.91)^{15}(0.09)^{0}] = 0.0002](https://tex.z-dn.net/?f=%20P%20%28X%20%3C%209%29%20%3D%201%20-%20P%20%28X%20%5Cgeq%209%29%20%3D%201%20-%20%5B%7B15%20%5Cchoose%209%7D%20%280.91%29%5E%7B9%7D%280.09%29%5E%7B6%7D%2B...%2B%7B%2015%20%5Cchoose%2015%7D%280.91%29%5E%7B15%7D%280.09%29%5E%7B0%7D%5D%20%3D%200.0002%20)
![P (X < 10) = 1 - P (X \geq 10) = 1 - [{15 \choose 10}(0.91)^{10}(0.09)^{5}+...+{15 \choose 15} (0.91)^{15}(0.09)^{0}] = 0.0013](https://tex.z-dn.net/?f=%20P%20%28X%20%3C%2010%29%20%3D%201%20-%20P%20%28X%20%5Cgeq%2010%29%20%3D%201%20-%20%5B%7B15%20%5Cchoose%2010%7D%280.91%29%5E%7B10%7D%280.09%29%5E%7B5%7D%2B...%2B%7B15%20%5Cchoose%2015%7D%20%280.91%29%5E%7B15%7D%280.09%29%5E%7B0%7D%5D%20%3D%200.0013%20)
![P (X < 11) = 1 - P (X \geq 11) = 1 - [{15 \choose 11}(0.91)^{11}(0.09)^{4}+...+{15 \choose 15} (0.91)^{15}(0.09)^{0}] = 0.0082](https://tex.z-dn.net/?f=%20P%20%28X%20%3C%2011%29%20%3D%201%20-%20P%20%28X%20%5Cgeq%2011%29%20%3D%201%20-%20%5B%7B15%20%5Cchoose%2011%7D%280.91%29%5E%7B11%7D%280.09%29%5E%7B4%7D%2B...%2B%7B15%20%5Cchoose%2015%7D%20%280.91%29%5E%7B15%7D%280.09%29%5E%7B0%7D%5D%20%3D%200.0082)
![P (X < 12) = 1- P (X \geq 12) = 1 - [{15 \choose 12}(0.91)^{12}(0.09)^{3}+...+{15 \choose 15} (0.91)^{15}(0.09)^{0}] = 0.0399](https://tex.z-dn.net/?f=%20P%20%28X%20%3C%2012%29%20%3D%201-%20P%20%28X%20%5Cgeq%2012%29%20%3D%201%20-%20%5B%7B15%20%5Cchoose%2012%7D%280.91%29%5E%7B12%7D%280.09%29%5E%7B3%7D%2B...%2B%7B15%20%5Cchoose%2015%7D%20%280.91%29%5E%7B15%7D%280.09%29%5E%7B0%7D%5D%20%3D%200.0399%20)
Probability of stopping the machine when
is 0.0002
Probability of stopping the machine when
is 0.0013
Probability of stopping the machine when
is 0.0082
Probability of stopping the machine when
is 0.0399