1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir79 [104]
2 years ago
12

Whats the measurment for H?

Mathematics
1 answer:
AlexFokin [52]2 years ago
8 0
∠h=180-90-45=45º
............................
You might be interested in
-26 times a number minus 22 is equal to 90 less than the number.
IgorLugansk [536]

Answer:

x = \frac{68}{27}

Step-by-step explanation:

Let x be the number

  1. Write it out: -26x - 22 = x - 90
  2. Combine like terms: -27x + 68 = 0
  3. Subtract 68 from each side, so it now looks like this: -27x = -68
  4. Divide each side by -27 to cancel out the -27 next to x. It should now look like this: x = \frac{68}{27}  

I hope this helps!

6 0
2 years ago
Pls help this is an ixl question and it really is hard
valentina_108 [34]

Answer:

It would be the first one... 10:25

Step-by-step explanation:

10/4=2.5

2.5*10=25

2.5*4=10

7 0
2 years ago
The population of a town in 2000 was 430. The population is increasing at a rate of 0.9% every year. What will be the projected
never [62]
The formula is
P=Ae^rt
P ?
A 430
R 0.9/100=0.009
T time 2010-2000=10 years
E constant
P=430×e^(0.009×10)
p=470
5 0
2 years ago
1. A bag contains rubber bands with lengths that are normally distributed with a mean of 6 cm of length, and a standard deviatio
romanna [79]
Roughly 1.7 percent of the bands are shorter than 3cm. We calculate the z score of the data point in standard distribution. By definition of z score, we use score minus mean divided by standard deviation. z=(3-6)/1.5=-2. A z score of -2 corresponds to approximately 1.7%, in other words, roughly 1.7 percent of data is less than 3cm.
4 0
3 years ago
1. Approximate the given quantity using a Taylor polynomial with n3.
Jet001 [13]

Answer:

See the explanation for the answer.

Step-by-step explanation:

Given function:

f(x) = x^{1/4}

The n-th order Taylor polynomial for function f with its center at a is:

p_{n}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(n)}a}{n!} (x-a)^{n}

As n = 3  So,

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{3!} (x-a)^{3}

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{6} (x-a)^{3}

p_{3}(x) = a^{1/4} + \frac{1}{4a^{ 3/4} }  (x-a)+ (\frac{1}{2})(-\frac{3}{16a^{7/4} } ) (x-a)^{2} +  (\frac{1}{6})(\frac{21}{64a^{11/4} } ) (x-a)^{3}

p_{3}(x) = 81^{1/4} + \frac{1}{4(81)^{ 3/4} }  (x-81)+ (\frac{1}{2})(-\frac{3}{16(81)^{7/4} } ) (x-81)^{2} +  (\frac{1}{6})(\frac{21}{64(81)^{11/4} } ) (x-81)^{3}

p_{3} (x) = 3 + 0.0092592593 (x - 81) + 1/2 ( - 0.000085733882) (x - 81)² + 1/6  

                                                                                  (0.0000018522752) (x-81)³

p_{3} (x)  =  0.0092592593 x - 0.000042866941 (x - 81)² + 0.00000030871254

                                                                                                       (x-81)³ + 2.25

Hence approximation at given quantity i.e.

x = 94

Putting x = 94

p_{3} (94)  =  0.0092592593 (94) - 0.000042866941 (94 - 81)² +          

                                                                 0.00000030871254 (94-81)³ + 2.25

         = 0.87037 03742 - 0.000042866941 (13)² + 0.00000030871254(13)³ +    

                                                                                                                       2.25

         = 0.87037 03742 - 0.000042866941 (169) +  

                                                                      0.00000030871254(2197) + 2.25

         = 0.87037 03742 - 0.007244513029 + 0.0006782414503 + 2.25

p_{3} (94)  = 3.113804102621

Compute the absolute error in the approximation assuming the exact value is given by a calculator.

Compute \sqrt[4]{94} as 94^{1/4} using calculator

Exact value:

E_{a}(94) = 3.113737258478

Compute absolute error:

Err = | 3.113804102621 - 3.113737258478 |

Err (94)  = 0.000066844143

If you round off the values then you get error as:

|3.11380 - 3.113737| = 0.000063

Err (94)  = 0.000063

If you round off the values up to 4 decimal places then you get error as:

|3.1138 - 3.1137| = 0.0001

Err (94)  = 0.0001

4 0
3 years ago
Other questions:
  • What value of x is in the solution set of 4x - 12 s 16 + 8x?<br> 6 Of<br> -10<br> -7
    7·2 answers
  • find two consecutive even integers such that five times the smaller integer is ten more than three times the larger integer
    7·1 answer
  • A triangle has area 42 cm squared find the height in centimeters if it is 5 cm shorter than the base
    7·1 answer
  • . (6.03) Which of the following best describes the expression 6(y + 3)? (4 points) The product of two constant factors six and t
    8·1 answer
  • What is a divided by b = 25xy/6x
    11·1 answer
  • A
    5·1 answer
  • luis, marissa, and federico are raising money for a school trip. Luis has raised 6/7 of the total amount needed, marissa has rai
    7·2 answers
  • What is the solution set of these system5x-2y=17 and 4x-7=13?
    13·1 answer
  • PLEASE HELP QUICKLY. I NEED HELP!
    6·1 answer
  • how would you move the green shape exactly over the gray shape using the fewest moves? check only necessary moves
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!