The ratio is 4:5
Divide both terms by 4
16/4 =4
20/4=5
Answer:
is number 6
Step-by-step explanation:
the greatest common factor is the largest common factor of those.
Answer:
(a) How many are there to select 2 pairs of gloves?
10 ways
(b) How many ways are there to select 4 gloves out of the 10 such that 2 of the 4 make a pair. (a pair consists of any right glove and left glove.)
130 ways
Step-by-step explanation:
We solve the above questions using Combination
Combination = C(n, r) = nCr
= n!/n! ×(n - r)!
(a) How many are there to select 2 pairs of gloves?
We have 5 pairs of gloves. Therefore, the number of ways to select 2 gloves =5C2
= 5!/2! × (5 - 2)!
= 5!/2! × 3!
= 5 × 4 × 3 × 2 × 1/(2 × 1) × (3 × 2 × 1)!
= 10 ways.
(b) How many ways are there to select 4 gloves out of the 10 such that 2 of the 4 make a pair. (a pair consists of any right glove and left glove.)
We are told to select 4 gloves out of the 10 gloves = 10C4
We have 5 pairs, we need to make sure that two out of the selected 4 make a pair = 5 × 2⁴
= 80
Hence,
10C4 - 5C4
= [10!/4! × (10 - 4)!] - 80
= 210 - 80
= 130 ways
X = 4 ; x = 3 + i ; x = 3 - i
(If you get a zero that is adding or subtracting, you always need to write it twice but change the sign do they cancel out)
f(x) = (x-4)(x-3-i)(x-3+i)
Distributing the last two parenthesis first is always the best way to start off
(x-3-i)(x-3+i) has (x-3) in common so it can be separated to
(x-3)^2 + (-i)(+i)
(x^2 - 6x + 9) ; (-i)(+i) is always +1
(x^2 - 6x + 9) + 1
(x^2 - 6x + 10)
Now multiply this with (x-4)
x^3 - 6x^2 + 10x
- 4x^2 + 24x - 40
x^3 - 10x^2 + 34x - 40 = f(x)