As the centripetal force<span> acts upon an </span>object moving <span>in a </span>circle<span> at constant speed, the </span>force<span> always acts inward as the velocity of the </span>object<span> is directed tangent to the </span>circle. ... In fact, whenever the unbalanced centripetal force<span> acts perpendicular to the direction of </span>motion<span>, the speed of the </span>object will<span> remain constant.</span>
Answer:
Work, W = 846.72 Joules
Explanation:
Given that,
Mass of the watermelon, m = 4.8 kg
It is dropped from rest from the roof of 18 m building. We need to find the work done by the gravity on the watermelon from the roof to the ground. It is same as gravitational potential energy i.e.
W = mgh
W = 846.72 Joules
So, the work done by the gravity on the watermelon is 846.72 Joules. Hence, this is the required solution.
It depends on the size of the star. If it's size was normal then it cools down into White dwarf, then a black dwarf. If a really huge star dies, then we can see a "Supernova" from that.
Hope this helps!!
Answer:
A boat travels for three hours with a... A boat travels for three hours with a current of 3 mph and then returns the same distance against the current in four hours. What is the boat's speed in still water?
Explanation:
Answer:
The phase angle is 0.0180 rad.
(c) is correct option.
Explanation:
Given that,
Voltage = 12 V
Angular velocity = 50 Hz
Capacitance 
Inductance 
Resistance 
We need to calculate the impedance
Using formula of impedance



We need to calculate the phase angle
Using formula of phase angle



Hence, The phase angle is 0.0180 rad.