Answer:
v = 5.15 m/s
Explanation:
At constant velocity, the cable tension will equal the car weight of 984(9.81) = 9,653 N
As the cable tension is less than this value, the car must be accelerating downward.
7730 = 984(9.81 - a)
a = 1.95 m/s²
kinematic equations s = ut + ½at² and v = u + at
-5.00 = u(4.00) + ½(-1.95)4.00²
u = 2.65 m/s the car's initial velocity was upward at 2.65 m/s
v = 2.65 + (-1.95)(4.00)
v = -5.15 m/s
Answer:
The time interval is 
Explanation:
From the question we are told that
The constant acceleration is 
The displacement is
According to the second equation of motion we have that
given that the blade started from rest
which is the initial angular velocity is 0
So
=> 
substituting values
=> 
=> 
Answer: The domain that is aligned with the applied field will grow, while the domain that is oppositely aligned to the magnetic field will shrink, this is because permanent magnets produces their own magnetic field.
Answer:
Explanation:
Given
Sphere of Radius R
Suppose mass of block is m
At any instant \theta Normal reaction(N) and weight(mg) is acting such that
, where v is velocity of block at any angle \theta
When block is just about to leave then N=0
therefore

-------------------1
Also by conserving Energy we get
Potential Energy=kinetic Energy of block

here h=vertical distance traveled by block
From diagram



-----------------2
From 1 and 2



Thus from this value of h is



Answer:

Explanation:
F = Magnetic force = 0.018 N
B = Magnetic field = 0.03 T
L = Length of wire = 35 cm
= Angle between current and magnetic field = 
Magnetic force is given by

The magnitude of the current is
.