Answer:
The only option 3 is correct
Step-by-step explanation:
See the given diagram.
1. ∠ D = ∠ B {Since AB ║ DE and DB is transverse line. So, they are alternate angles.}
So, ∠ D = 43° ≠ 28°
2. Now, ∠ A = ∠ CED {Again they are alternate angles}
⇒ ∠ A = ∠ CED = 180° - ∠ CEF = 180° - 152° = 28° ≠ 43°.
3. Again, ∠ ACD = 180° - ∠ ACB = ∠ A + ∠ B = 28° + 43° = 71°.
4. ∠ BCE = ∠ ACD {Vertically opposite angles}
⇒ ∠ BCE = 71° ≠ 109°
Therefore, the only option 3 is correct. (Answer)
Answer:
The statement is true is for any
.
Step-by-step explanation:
First, we check the identity for
:



The statement is true for
.
Then, we have to check that identity is true for
, under the assumption that
is true:
![(1^{2}+2^{2}+3^{2}+...+k^{2}) + [2\cdot (k+1)-1]^{2} = \frac{(k+1)\cdot [2\cdot (k+1)-1]\cdot [2\cdot (k+1)+1]}{3}](https://tex.z-dn.net/?f=%281%5E%7B2%7D%2B2%5E%7B2%7D%2B3%5E%7B2%7D%2B...%2Bk%5E%7B2%7D%29%20%2B%20%5B2%5Ccdot%20%28k%2B1%29-1%5D%5E%7B2%7D%20%3D%20%5Cfrac%7B%28k%2B1%29%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29-1%5D%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29%2B1%5D%7D%7B3%7D)
![\frac{k\cdot (2\cdot k -1)\cdot (2\cdot k +1)}{3} +[2\cdot (k+1)-1]^{2} = \frac{(k+1)\cdot [2\cdot (k+1)-1]\cdot [2\cdot (k+1)+1]}{3}](https://tex.z-dn.net/?f=%5Cfrac%7Bk%5Ccdot%20%282%5Ccdot%20k%20-1%29%5Ccdot%20%282%5Ccdot%20k%20%2B1%29%7D%7B3%7D%20%2B%5B2%5Ccdot%20%28k%2B1%29-1%5D%5E%7B2%7D%20%3D%20%5Cfrac%7B%28k%2B1%29%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29-1%5D%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29%2B1%5D%7D%7B3%7D)
![\frac{k\cdot (2\cdot k -1)\cdot (2\cdot k +1)+3\cdot [2\cdot (k+1)-1]^{2}}{3} = \frac{(k+1)\cdot [2\cdot (k+1)-1]\cdot [2\cdot (k+1)+1]}{3}](https://tex.z-dn.net/?f=%5Cfrac%7Bk%5Ccdot%20%282%5Ccdot%20k%20-1%29%5Ccdot%20%282%5Ccdot%20k%20%2B1%29%2B3%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29-1%5D%5E%7B2%7D%7D%7B3%7D%20%3D%20%5Cfrac%7B%28k%2B1%29%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29-1%5D%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29%2B1%5D%7D%7B3%7D)

![(2\cdot k +1)\cdot [k\cdot (2\cdot k -1)+3\cdot (2\cdot k +1)] = (k+1) \cdot (2\cdot k +1)\cdot (2\cdot k +3)](https://tex.z-dn.net/?f=%282%5Ccdot%20k%20%2B1%29%5Ccdot%20%5Bk%5Ccdot%20%282%5Ccdot%20k%20-1%29%2B3%5Ccdot%20%282%5Ccdot%20k%20%2B1%29%5D%20%3D%20%28k%2B1%29%20%5Ccdot%20%282%5Ccdot%20k%20%2B1%29%5Ccdot%20%282%5Ccdot%20k%20%2B3%29)



Therefore, the statement is true for any
.
Answer:
<h3>36 and 12</h3>
Step-by-step explanation:
Let the two positive integers be x and y.
If their product is 432, then
xy = 432 ......... 1
Also if the sum of the first plus three times the second is a minimum, then;
p(x) = x + 3y
From 1;
y = 432/x ..... 3
Substitute 3 into 2;
p(x) = x+3y
p(x)= x + 3(432/x)
p(x) = x + 1296/x
Since the expression is at minimum when dp(x)/dx = 0
dp/dx = 1 + (-1296)/x²
dp/dx = 1 -1296/x²
0 = 1 -1296/x²
0 = (x²-1296)/x²
cross multiply
0 = x²-1296
x² = 1296
x = √1296
x = 36
Since xy = 432
36y = 432
y = 432/36
y = 12
Hence the two positive numbers are 36 and 12
Answer:
Step-by-step explanation:
he would have to pay 60 dollars but I don't really understand your question
Answer:
Two, 8 and -12
Step-by-step explanation: