Answer:
you just have to draw a line from the eye reflecting from the mirror to the object shown.
Explanation:
Dont come at me if its wrong. I think thats what their asking of you.
Answer:
Now e is due to the ring at a
So
We say
1/4πEo(ea/ a²+a²)^3/2
= 1/4πEo ea/2√2a³
So here E is faced towards the ring
Next is E due to a point at the centre
So
E² = 1/4πEo ( e/a²)
Finally we get the total
Et= E²-E
= e/4πEo(2√2-1/2√2)
So the direction here is away from the ring
Yep it is. Defiantly the circulatory system
If you were somehow magically transported to Jupiter, your mass
would not change, but your weight would become roughly 2.5 times
your Earth weight.
Answer:
a) C.M 
b) 
Explanation:
The center of mass "represent the unique point in an object or system which can be used to describe the system's response to external forces and torques"
The center of mass on a two dimensional plane is defined with the following formulas:


Where M represent the sum of all the masses on the system.
And the center of mass C.M 
Part a
represent the masses.
represent the coordinates for the masses with the units on meters.
So we have everything in order to find the center of mass, if we begin with the x coordinate we have:


C.M 
Part b
For this case we have an additional mass
and we know that the resulting new center of mass it at the origin C.M
and we want to find the location for this new particle. Let the coordinates for this new particle given by (a,b)

If we solve for a we got:




And solving for b we got:

So the coordinates for this new particle are:
