1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NARA [144]
3 years ago
5

The hard external covering of some invertebrates is called a what

Physics
2 answers:
IRISSAK [1]3 years ago
6 0
That would be the exoskeleton!
Alexandra [31]3 years ago
4 0
The answer would be exoskeleton.
<span />
You might be interested in
A bus is moving and has 500000 joules of kinetic energy. The brakes are applied and the bus stops. How much work is needed to st
Bad White [126]
For the work-energy theorem, the work needed to stop the bus is equal to its variation of kinetic energy:
W=K_f - K_i
where
W is the work
Kf is the final kinetic energy of the bus
Ki is the initial kinetic energy of the bus

Since the bus comes at rest, its final kinetic energy is zero: K_f = 0, so the work done by the brakes to stop the bus is
W=-K_i = -500000 J
And the work done is negative, because the force applied by the brake is in the opposite direction to that of the bus motion.
8 0
3 years ago
a fan is rotating clockwise and its acceleration has a positive sign. is the angular velocity of the fan speeding up, slowing do
balu736 [363]

Answer:

The angular velocity is slowing down.

Explanation:

  • By convention, if a rigid body is rotating clockwise, the angular velocity is negative.
  • If the angular acceleration has a positive sign, since the angular acceleration and the angular velocity have opposite signs, this means that the angular velocity is slowing down.
5 0
3 years ago
A gas expands against a constant external pressure of 2.00 atm until its volume has increased from 6.00 to 10.00 L. During this
mars1129 [50]

Answer:

ΔU = - 310.6 J (negative sign indicates decrease in internal energy)

W = 810.6 J

Explanation:

a.

Using first law of thermodynamics:

Q = ΔU + W

where,

Q = Heat Absorbed = 500 J

ΔU = Change in Internal Energy of Gas = ?

W = Work Done = PΔV =

P = Pressure = 2 atm = 202650 Pa

ΔV = Change in Volume = 10 L - 6 L = 4 L = 0.004 m³

Therefore,

Q = ΔU + PΔV

500 J = ΔU + (202650 Pa)(0.004 m³)

ΔU = 500 J - 810.6 J

<u>ΔU = - 310.6 J (negative sign indicates decrease in internal energy)</u>

<u></u>

b.

The work done can be simply calculated as:

W = PΔV

W = (202650 Pa)(0.004 m³)

<u>W = 810.6 J</u>

7 0
3 years ago
A wave has a frequency of 35 Hz and a wavelength of 15 meters,<br> what is the speed of the wave?
Mila [183]

Answer:

f lamda = c

Explanation:

525 m/s is the speed

5 0
3 years ago
A 60kg bicyclist (including the bicycle) is pedaling to the
Fittoniya [83]

a) 4 forces

b) 186 N

c) 246 N

Explanation:

a)

Let's count the forces acting on the bicylist:

1) Weight (W=mg): this is the gravitational force exerted on the bicyclist by the Earth, which pulls the bicyclist towards the Earth's centre; so, this force acts downward (m = mass of the bicyclist, g = acceleration due to gravity)

2) Normal reaction (N): this is the reaction force exerted by the road on the bicyclist. This force acts vertically upward, and it balances the weight, so its magnitude is equal to the weight of the bicyclist, and its direction is opposite

3) Applied force (F_A): this is the force exerted by the bicylicist to push the bike forward. Its direction is forward

4) Air drag (R): this is the force exerted by the air on the bicyclist and resisting the motion of the bike; its direction is opposite to the motion of the bike, so it is in the backward direction

So, we have 4 forces in total.

b)

Here we can find the net force on the bicyclist by using Newton's second law of motion, which states that the net force acting on a body is equal to the product between the mass of the body and its acceleration:

F_{net}=ma

where

F_{net} is the net force

m is the mass of the body

a is its acceleration

In this problem we have:

m = 60 kg is the mass of the bicyclist

a=3.1 m/s^2 is its acceleration

Substituting, we find the net force on the bicyclist:

F_{net}=(60)(3.1)=186 N

c)

We can write the net force acting on the bicyclist in the horizontal direction as the resultant of the two forces acting along this direction, so:

F_{net}=F_a-R

where:

F_{net} is the net force

F_a is the applied force (forward)

R is the air drag (backward)

In this problem we have:

F_{net}=186 N is the net force (found in part b)

R=60 N is the magnitude of the air drag

Solving for F_a, we find the force produced by the bicyclist while pedaling:

F_a=F_{net}+R=186+60=246 N

3 0
3 years ago
Other questions:
  • Where would you expect to have more touch receptors: on the palm of your hand or on the back of your hand? Explain your reasonin
    15·1 answer
  • A uniform disk a uniform hoop and a uniform sphere are released at the same time at the top of an inclined ramp. They all roll w
    5·1 answer
  • Which of these equations will you used to find the final velocity if the initial
    13·1 answer
  • 3. Categorize each statement as true or false. True False as the fringe order increase for a diffraction grating the fringe brig
    8·1 answer
  • Part III: If a mouse and an elephant both run with the same kinetic energy, can you say which is running faster? Use the space b
    10·1 answer
  • How are you progressing towards the goals you set for yourself? What do you need to keep on track?
    12·2 answers
  • Ummmm ya girl needs help
    10·2 answers
  • What's the answers for all of the questions ?///
    11·1 answer
  • What are some common positive and negative attitudes toward physical activities? What
    11·1 answer
  • As additional resistors are connected in parallel to a constant voltage source, how is the power supplied by the source affected
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!