➻ In a group of 40 people, 27 can speak English and 25 can speak Spanish.
➻ The required number of people who can speak both English and Spanish .
<u>Consider</u> ,
➻ A → Set of people who speak English.
➻ B → Set of people who speak Spanish
➻ A∩B → Set of people who can speak both English and Spanish
➻ n(A∪B) = n(A) + n (B) - n(A∩B)
➻ 40 = 27 + 25 - n (A∩B)
➻ 40 = 52 - n (A∩B)
➻ n (A∩B) = 52 - 40
➻ ∴ n (A∩B) = 12
∴ Required Number of persons who can speak both English and Spanish are <u>12 .</u>
━━━━━━━━━━━━━━━━━━━━━━

➻ n(A∪B) = n(A) + n (B) - n(A∩B)
➻ 40 = 27 + 25 - 12
➻ 40 = 52 - 12
➻ 40 = 40
➻ ∴ L.H.S = R.H.S
━━━━━━━━━━━━━━━━━━━━━━
Answer:
5sqrt(2)
Step-by-step explanation:
you can split 50 into sqrt(25×2)
and the sqrt(25) is 5, so than your left with just the 2 in the sqrt.
Answer:
15 girls, 10 boys
Step-by-step explanation:
Since the ratio is 3:2, then the ratio can be rewritten as 15:10. So there are 15 girls and 10 boys
Complete question:
A project is graded on a scale of 1 to 5. If the random variable, X, is the project grade, what is the mean of the probability
distribution below?
Grade(X)_____ 1_____2_____3_____4_____5
Frequency____3 _____5____ 9 ____ 5 ____ 3
P(X) : _______ 0.1 ___0.2 ___0.4 ___ 0.2 __0.1
Answer:
3
Step-by-step explanation:
Given the probability distribution :
Grade(X)_____ 1_____2_____3_____4_____5
Frequency____3 _____5____ 9 ____ 5 ____ 3
P(X) : _______ 0.1 ___0.2 ___0.4 ___ 0.2 __0.1
The mean of the distribution :
Σ(X * P(X)) :
(1*0. 1) + (2 * 0.2) + (3 * 0.4) + (4 * 0.2) + (5 * 0.1)
0.1 + 0.4 + 1.2 + 0.8 + 0.5
= 3
0.25 pints is the answer. I hope this helps!