Answer:
The width of the strand of hair is 1.96 10⁻⁵ m
Explanation:
For this diffraction problem they tell us that it is equivalent to the diffraction of a single slit, which is explained by the equation
<h3> a sin θ =± m λ
</h3><h3 />
Where the different temrs are: “a” the width of the hair, λ the wavelength, θ the angle from the center, m the order of diffraction, which is the number of bright rings (constructive diffraction)
We can see that the diffraction angle is missing, but we can find it by trigonometry, where L is the distance of the strand of hair to the observation screen and "y" is the perpendicular distance to the first minimum of intensity
L = 1.25 m 100 cm/1m = 125 cm
y = 5.06 cm
Tan θ = y/L
Tan θ = 5.06/125
θ = tan⁻¹ ( 0.0405)
θ = 2.32º
With this data we can continue analyzing the problem, they indicate that they measure the distance to the first dark strip, thus m = 1
a = m λ / sin θ
a = 1 633 10⁻⁹ 1.25/sin 2.3
a = 1.96 10⁻⁵ m
a = 0.0196 mm
The width of the strand of hair is 1.96 10⁻⁵ m
A.) Hertz is the measuring unit for frequency!!
[Your explanation is correct]
Hope this helps!
Answer:
all colours are absorbed except for the colour of the filter.
Explanation:
When white light passes through a coloured filter, all colours are absorbed except for the colour of the filter. For example, an orange filter transmits orange light but absorbs all the other colours. If white light is shone on an orange filter, only the orange wavelengths will be observed by the human eye.