Answer:
he hates it he loves it im only doin this for points
The sample response given in the question is right.
To find the answer, we need to know more about the distance and displacement.
<h3>How distance differ from displacement?</h3>
- Displacement is the shortest distance between the initial and final points of a body.
- It is the change in position with a fixed direction.
- Displacement is a vector quantity and can be positive, negative or zero values.
- Distance is the length of actual path of the body between initial and final positions.
- It's a scalar quantity and it can be positive or zero.
- The magnitude of displacement is less than or equal to the distance travelled.
Thus, we can conclude that the given sample response is right.
Learn more about distance here:
brainly.com/question/28124225
#SPJ1
The standard ambient temperature and pressure are
Temperature =298 K
Pressure = 1atm
The density of gas is 1.5328 g/L
density = mass of gas per unit volume
the ideal gas equation is
PV = nRT
P = pressure = 1 atm
V = volume
n = moles
R= gas constant = 0.0821 Latm/mol K
T = 298 K
moles = mass / molar mass
so we can write
n/V = density / molar mass
Putting values



Thus molar mass of gas is 37.50g/mol
Answer:
Final pressure in (atm) (P1) = 6.642 atm
Explanation:
Given:
Initial volume of gas (V) = 12.5 L
Pressure (P) = 784 torr
Temperature (T) = 295 K
Final volume (V1) = 2.04 L
Final temperature (T1) = 310 K
Find:
Final pressure in (atm) (P1) = ?
Computation:
According to combine gas law method:

⇒ Final pressure (P1) = 5,048.18877 torr
⇒ Final pressure in (atm) (P1) = 5,048.18877 torr / 760
⇒ Final pressure in (atm) (P1) = 6.642 atm
Answer: A, 1.3*1020, 1326
A. 1326
B. 2960.9
C. 9804
D. 8559.6