Answer:
Explanation:
a) In an exothermic reaction, the energy transferred to the surroundings from forming new bonds is ___more____ than the energy needed to break existing bonds.
b) In an endothermic reaction, the energy transferred to the surroundings from forming new bonds is ___less____ than the energy needed to break existing bonds.
c) The energy change of an exothermic reaction has a _____negative_______ sign.
d) The energy change of an endothermic reaction has a ____positive________ sign.
The energy changes occur during the bonds formation and bonds breaking.
There are two types of reaction endothermic and exothermic reaction.
Endothermic reactions:
The type of reactions in which energy is absorbed are called endothermic reactions.
In this type of reaction energy needed to break the bond are higher than the energy released during bond formation.
For example:
C + H₂O → CO + H₂
ΔH = +131 kj/mol
it can be written as,
C + H₂O + 131 kj/mol → CO + H₂
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol
Answer:
The significance of "Er" in the diagram is :
B.) Threshold energy for reaction
Explanation:
Threshold energy : It is total amount of energy required by the reactant molecule to reach the transition state .
Activation energy : It is the excess energy absorbed by the molecules to reach the transition state.
<u>Activation Energy = Threshold Energy - Average Kinetic Energy</u>
<u>This means Activation energy decreases on increasing kinetic energy</u>
On increasing Temperature average kinetic energy of the molecule increases which reduces the activation energy and the reaction occur faster in that case.
Catalyst also reduces the Activation energy.
<u>Er = Threshshold energy for reaction at 30 degree</u>
<u>Ea = Activation Energy</u>
<u>The given figure shows that the threshold energy decreases on increasing the temperature</u>
<u>Only the molecule having energy greater than Er can react to form product</u>
A chemical reaction (signs)
- rusting
- change in base of chemical
- for example lets say u mix two chemicals, and then it becomes a different new chemical (it changed from the inside)
a physical
- a physical reaction is outer looks not inside.
- it changes on the outside, like changing a color
Answer:
20.27 mol
Explanation:
454 L x (1 mol/22.4 L) = 20.27 mol
Answer:
The value of the equilibrium constant for reaction asked is
.
Explanation:


![K_{goal}=\frac{[C][O_2]}{[CO_2]}](https://tex.z-dn.net/?f=K_%7Bgoal%7D%3D%5Cfrac%7B%5BC%5D%5BO_2%5D%7D%7B%5BCO_2%5D%7D)
..[1]
![K_1=\frac{[CH_3COOH][O_2]^2}{[CO_2]^2[H_2O]^2}](https://tex.z-dn.net/?f=K_1%3D%5Cfrac%7B%5BCH_3COOH%5D%5BO_2%5D%5E2%7D%7B%5BCO_2%5D%5E2%5BH_2O%5D%5E2%7D)
..[2]
![K_2=\frac{[H_2O]^2}{[H_2]^2[O_2]}](https://tex.z-dn.net/?f=K_2%3D%5Cfrac%7B%5BH_2O%5D%5E2%7D%7B%5BH_2%5D%5E2%5BO_2%5D%7D)
..[3]
![K_3=\frac{[C]^2[H_2]^2[O_2]}{[CH_3COOH]}](https://tex.z-dn.net/?f=K_3%3D%5Cfrac%7B%5BC%5D%5E2%5BH_2%5D%5E2%5BO_2%5D%7D%7B%5BCH_3COOH%5D%7D)
[1] + [2] + [3]

( on adding the equilibrium constant will get multiplied with each other)



![K=\frac{[C]^2[O_2]^2}{[CO_2]^2}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BC%5D%5E2%5BO_2%5D%5E2%7D%7B%5BCO_2%5D%5E2%7D)
On comparing the K and
:


The value of the equilibrium constant for reaction asked is
.