Answer:
(a) See below
(b) 103.935 °F; 102.235 °F
Explanation:
The equation relating the temperature to time is
![T = T_{0} + \Delta T\left (1 - e^{-t/\tau} \right )](https://tex.z-dn.net/?f=T%20%3D%20T_%7B0%7D%20%2B%20%5CDelta%20T%5Cleft%20%281%20-%20e%5E%7B-t%2F%5Ctau%7D%20%5Cright%20%29)
1. Calculate the thermometer readings after 0.5 min and 1 min
(a) After 0.5 min
![\begin{array}{rcl}T & = & T_{0} + \Delta T\left (1 - e^{-t/\tau} \right )\\ & = & 100 + 10\left (1 - e^{-0.5/1} \right )\\ & = & 100 + 10\left (1 - e^{-0.5} \right )\\ & = & 100 + 10 (1 - 0.6065)\\ & = & 100 + 10(0.3935)\\ & = & 100 + 3.935\\ & = & 103.935\,^{\circ}F\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7DT%20%26%20%3D%20%26%20T_%7B0%7D%20%2B%20%5CDelta%20T%5Cleft%20%281%20-%20e%5E%7B-t%2F%5Ctau%7D%20%5Cright%20%29%5C%5C%20%26%20%3D%20%26%20100%20%2B%2010%5Cleft%20%281%20-%20e%5E%7B-0.5%2F1%7D%20%5Cright%20%29%5C%5C%20%26%20%3D%20%26%20100%20%2B%2010%5Cleft%20%281%20-%20e%5E%7B-0.5%7D%20%5Cright%20%29%5C%5C%20%26%20%3D%20%26%20100%20%2B%2010%20%281%20-%200.6065%29%5C%5C%20%26%20%3D%20%26%20100%20%2B%2010%280.3935%29%5C%5C%20%26%20%3D%20%26%20100%20%2B%203.935%5C%5C%20%26%20%3D%20%26%20103.935%5C%2C%5E%7B%5Ccirc%7DF%5C%5C%5Cend%7Barray%7D)
(b) After 1 min
![\begin{array}{rcl}T & = & T_{0} + \Delta T\left (1 - e^{-t/\tau} \right )\\ & = & 100 + 10\left (1 - e^{-1/1} \right )\\ & = & 100 + 10\left (1 - e^{-1} \right )\\ & = & 100 + 10 (1 - 0.3679)\\ & = & 100 + 10(0.6321)\\ & = & 100 + 6.321\\ & = & 106.321\,^{\circ}F\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7DT%20%26%20%3D%20%26%20T_%7B0%7D%20%2B%20%5CDelta%20T%5Cleft%20%281%20-%20e%5E%7B-t%2F%5Ctau%7D%20%5Cright%20%29%5C%5C%20%26%20%3D%20%26%20100%20%2B%2010%5Cleft%20%281%20-%20e%5E%7B-1%2F1%7D%20%5Cright%20%29%5C%5C%20%26%20%3D%20%26%20100%20%2B%2010%5Cleft%20%281%20-%20e%5E%7B-1%7D%20%5Cright%20%29%5C%5C%20%26%20%3D%20%26%20100%20%2B%2010%20%281%20-%200.3679%29%5C%5C%20%26%20%3D%20%26%20100%20%2B%2010%280.6321%29%5C%5C%20%26%20%3D%20%26%20100%20%2B%206.321%5C%5C%20%26%20%3D%20%26%20106.321%5C%2C%5E%7B%5Ccirc%7DF%5C%5C%5Cend%7Barray%7D)
2. Calculate the thermometer reading after 2.0 min
T₀ =106.321 °F
ΔT = 100 - 106.321 °F = -6.321 °F
t = t - 1, because the cooling starts 1 min late
![\begin{array}{rcl}T & = & T_{0} + \Delta T\left (1 - e^{-(t - 1)/\tau} \right )\\ & = & 106.321 - 6.321\left (1 - e^{-(2 - 1)/1} \right )\\ & = & 106.321 - 6.321\left (1 - e^{-1} \right )\\ & = & 106.321 - 6.321 (1 - 0.3679)\\ & = & 106.321 - 6.321 (0.6321)\\ & = & 106.321 - 3.996\\ & = & 102.325\,^{\circ}F\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7DT%20%26%20%3D%20%26%20T_%7B0%7D%20%2B%20%5CDelta%20T%5Cleft%20%281%20-%20e%5E%7B-%28t%20-%201%29%2F%5Ctau%7D%20%5Cright%20%29%5C%5C%20%26%20%3D%20%26%20106.321%20-%206.321%5Cleft%20%281%20-%20e%5E%7B-%282%20-%201%29%2F1%7D%20%5Cright%20%29%5C%5C%20%26%20%3D%20%26%20106.321%20-%206.321%5Cleft%20%281%20-%20e%5E%7B-1%7D%20%5Cright%20%29%5C%5C%20%26%20%3D%20%26%20106.321%20-%206.321%20%281%20-%200.3679%29%5C%5C%20%26%20%3D%20%26%20106.321%20-%206.321%20%280.6321%29%5C%5C%20%26%20%3D%20%26%20106.321%20-%203.996%5C%5C%20%26%20%3D%20%26%20102.325%5C%2C%5E%7B%5Ccirc%7DF%5C%5C%5Cend%7Barray%7D)
3. Plot the temperature readings as a function of time.
The graphs are shown below.
A outlet,electrical,batteries
Answer:
there are spaces within the enzymes that is active. That active site allows substrates to join in. This helps the enzyme carry out the chemical reaction with the substrate.
Explanation:
A double bond between carbon atoms is longer than a triple bond between carbon atoms.