A. Which reduction should she use so the picture fills as much of the frame as possible, without being too large?
Find the scale factor to get rom 7 1/3 inches to 5 1/3 inches:
5 1/3 / 7 1/3 = 0.7272
Now rewrite the fraction as decimals:
2/3 = 0.667
¾ = 0.75
5/9 = 0.555
The closest scale that would still fit the frame would be 2/3 because it is under 0.727.
B. How much extra space is there in the frame when she uses the reduction from Part A?
Multiply the original size by the scale factor to use:
7 1/3 x 2/3 = 4 8/9
Now subtract the scaled size from the original size:
7 1/3 – 4 8/9 = 2 4/9 inches extra
C. If she had a machine that could reduce by any amount, so that she could make the reduced picture fit in the frame exactly, what fraction would the reduction be?
Convert the scale from part A to a fraction:
0.72 = 72/99 which reduces to 8/11
Answer:
The value of <em>x</em> is equal to 1, written as <em>x</em> = 1.
General Formulas and Concepts:
<u>Algebra I</u>
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Terms/Coefficients
Functions
Step-by-step explanation:
<u>Step 1: Define</u>
g(x) = 5x + 4
g(x) = 9
<u>Step 2: Solve for </u><u><em>x</em></u>
- Substitute in function value: 9 = 5x + 4
- [Subtraction Property of Equality] Subtract 4 on both sides: 5 = 5x
- [Division Property of Equality] Divide 5 on both sides: 1 = x
- Rewrite: x = 1
∴ when the function g(x) equals 9, the value of <em>x</em> that makes the function true would be <em>x</em> = 1.
---
Topic: Algebra I
Answer:
120
Step-by-step explanation:
<2 = 120 degrees
<3 = <2 vertical angles
Assuming b is parallel to c
<3 = <6 alternate interior angles
<6 = <7 vertical angles
<2 = <7 =120
It would be located in quadrant 4 because it has to be positive and negative.
Answer:
greater than because positive times negative equals positive