Incomplete question as many data is missing.I have assumed value of charge and electric field.The complete question is here
A charge of 28 nC is placed in a uniform electric field that is directed vertically upward and that has a magnitude of 5.00×10⁴ V/m.
What work is done by the electric force when the charge moves a distance of 2.70 m at an angle of 45.0 degrees downward from the horizontal?
Answer:

Explanation:
Given data
Charge q=28 nC
Electric field E=5.00×10⁴ V/m.
Distance d=2.70 m
Angle α=45°
To find
Work done by electric force
Solution

Answer:
Fucd6
Explanation:
Cuufufcuvjgjvug7fuguguguguf7
2Fe(s) + O2 -> 2FeO(s)
<span>2 'Fe' atoms on both sides </span>
<span>2 'O' atoms on both sides</span>
Explanation:
Let us calculate the work done in lifting an object of mass m through a height h, such as in Figure 1. If the object is lifted straight up at constant speed, then the force needed to lift it is equal to its weight mg. The work done on the mass is then W = Fd = mgh. We define this to be the gravitational potential energy (PEg) put into (or gained by) the object-Earth system. This energy is associated with the state of separation between two objects that attract each other by the gravitational force
Potential energy is a property of a system rather than of a single object—due to its physical position. An object’s gravitational potential is due to its position relative to the surroundings within the Earth-object system. The force applied to the object is an external force, from outside the system. When it does positive work it increases the gravitational potential energy of the system. Because gravitational potential energy depends on relative position, we need a reference level at which to set the potential energy equal to 0. We usually choose this point to be Earth’s surface, but this point is arbitrary; what is important is the difference in gravitational potential energy, because this difference is what relates to the work done. The difference in gravitational potential energy of an object (in the Earth-object system) between two rungs of a ladder will be the same for the first two rungs as for the last two rungs.
The vibration is thermal energy ("heat" energy which every object possesses).
The second one is kinetic energy ("motion" energy of a massive object)