Answer:
Explanation:
Electric field E = 4 x 10⁷ V / m
Dielectric constant k = 24
capacitance of capacitor
C = kε₀ A / d
d = plate separation
A = plate area
C = .89 x 10⁻⁶
V / d = electric field
for minimum d , electric field will be maximum
V / d = 4 x 10⁷
1930 / d = 4 x 10⁷
d = 1930 / 4 x 10⁷
d = 482.5 x 10⁻⁷ m
= 48.25 x 10⁻⁶ m
C = kε₀ A / d
.89 x 10⁻⁶ = 24 ε₀ A / d
A = .89 x 10⁻⁶ X d / 24 ε₀
A = .89 x 10⁻⁶ X 48.25 x 10⁻⁶ / 24 x 8.85 x 10⁻¹²
= 42.9 / 212.4
= .2019 m²
Answer:
a. μ
3 ± 1.8 = [1.2,4.8]
b. The correct answer is option D. No, because the sample size is large enough.
Explanation:
a. The population mean can be determined using a confidence interval which is made up of a point estimate from a given sample and the calculation error margin. Thus:
μ
±(t*s)/sqrt(n)
where:
μ
= is the 95% confidence interval estimate
x_ = mean of the sample = 3
s = standard deviation of the sample = 5.8
n = size of the sample = 41
t = the t statistic for 95% confidence and 40 (n-1) degrees of freedom = 2.021
substituting all the variable, we have:
μ
3 ± (2.021*5.8)/sqrt(41) = 3 ± 1.8 = [1.2,4.8]
b. The correct answer is option D. No, because the sample size is large enough.
Using the the Central Limit Theorem which states that regardless of the distribution shape of the underlying population, a sampling distribution of size which is ≥ 30 is normally distributed.
The wavelength, which represents the size of the smallest detectable detail that uses ultraviolet light , is calculated as follows: 3×
/ 1.72×
or approximately 1.74×
m.
The distance between the two positive, two negative, or two minimal points on the waveform is known as the wavelength of the wave. The following formula expresses the relationship between the frequency and wavelength of light:
f = c / λ
where, f = frequency of light
c = speed of light
λ = wavelength of light
Given data = f = 1.72×
Hz
Therefore, λ = 3×
/ 1.72×
λ = 1.74×
m
The wavelength, which represents the size of the smallest detectable detail that uses ultraviolet light , is calculated as follows: 3×
/ 1.72×
or approximately 1.74×
m.
Learn more about light here;
brainly.com/question/15200315
#SPJ4
One of Kepler's laws is that the orbits of planets are elliptical. It's not a suggestion.
BTW, circles are ellipses too, but so special that their likelihood is close to zero.