Answer:
A. The bomb will take <em>17.5 seconds </em>to hit the ground
B. The bomb will land <em>12040 meters </em>on the ground ahead from where they released it
Explanation:
Maverick and Goose are flying at an initial height of
, and their speed is v=688 m/s
When they release the bomb, it will initially have the same height and speed as the plane. Then it will describe a free fall horizontal movement
The equation for the height y with respect to ground in a horizontal movement (no friction) is
[1]
With g equal to the acceleration of gravity of our planet and t the time measured with respect to the moment the bomb was released
The height will be zero when the bomb lands on ground, so if we set y=0 we can find the flight time
The range (horizontal displacement) of the bomb x is
[2]
Since the bomb won't have any friction, its horizontal component of the speed won't change. We need to find t from the equation [1] and replace it in equation [2]:
Setting y=0 and isolating t we get

Since we have 


Replacing in [2]


A. The bomb will take 17.5 seconds to hit the ground
B. The bomb will land 12040 meters on the ground ahead from where they released it
Answer:

Explanation:
<u>Tangent and Angular Velocities</u>
In the uniform circular motion, an object describes the same angles in the same times. If
is the angle formed by the trajectory of the object in a time t, then its angular velocity is

if
is expressed in radians and t in seconds the units of w is rad/s. If the circular motion is uniform, the object forms an angle
in 2t, or
in 3t, etc. Thus the angular velocity is constant.
The magnitude of the tangent or linear velocity is computed as the ratio between the arc length and the time taken to travel that distance:

Replacing the formula for w, we have

The correct answer would be compound
Conductors are substances that pass an electrical charge.
Semiconductors are substances whose electrical conductivity is lower than that of metals and greater than that of dielectrics.
Electricity nonconductors or insulators - in the terminology of Faraday - dielectrics (see). N. perfect does not exist; they represent only a large resistance to galvanic current and then different bodies in varying degrees (see Galvanic current), so that between poor and good conductors there are many bodies of average conductivity. N. The galvanic current is also the best insulators of static electricity. N. Heat or its bad conductors are at the same time electrical insulators (see Thermal Conductivity).
A dielectric (insulator) is a substance that is poorly conducting or not conducting at all. The concentration of free charge carriers in a dielectric does not exceed 108 cm-3. The main property of the dielectric is the ability to polarize in an external electric field. From the point of view of the band theory of a solid body, a dielectric is a substance with a band gap greater than 3 eV.