We are given
![f=z^3 -x^2y](https://tex.z-dn.net/?f=f%3Dz%5E3%20-x%5E2y)
Firstly, we can find gradient
so, we will find partial derivatives
![f_x=0 -2xy](https://tex.z-dn.net/?f=f_x%3D0%20-2xy)
![f_x=-2xy](https://tex.z-dn.net/?f=f_x%3D-2xy)
![f_y=0 -x^2](https://tex.z-dn.net/?f=f_y%3D0%20-x%5E2)
![f_y=-x^2](https://tex.z-dn.net/?f=f_y%3D-x%5E2)
![f_z=3z^2](https://tex.z-dn.net/?f=f_z%3D3z%5E2%20)
now, we can plug point (-5,5,2)
![f_x=-2*-5*5=50](https://tex.z-dn.net/?f=f_x%3D-2%2A-5%2A5%3D50)
![f_y=-(-5)^2=-25](https://tex.z-dn.net/?f=f_y%3D-%28-5%29%5E2%3D-25)
![f_z=3(2)^2=12](https://tex.z-dn.net/?f=f_z%3D3%282%29%5E2%3D12%20)
so, gradient will be
![gradf=(50,-25,12)](https://tex.z-dn.net/?f=gradf%3D%2850%2C-25%2C12%29)
now, we are given that
it is in direction of v=⟨−3,2,−4⟩
so, we will find it's unit vector
![|v|=\sqrt{(-3)^2+(2)^2+(-4)^2}](https://tex.z-dn.net/?f=%7Cv%7C%3D%5Csqrt%7B%28-3%29%5E2%2B%282%29%5E2%2B%28-4%29%5E2%7D)
![|v|=\sqrt{29}](https://tex.z-dn.net/?f=%7Cv%7C%3D%5Csqrt%7B29%7D)
now, we can find unit vector
![v'=(\frac{-3}{\sqrt{29} } , \frac{2}{\sqrt{29} } , \frac{-4}{\sqrt{29} })](https://tex.z-dn.net/?f=v%27%3D%28%5Cfrac%7B-3%7D%7B%5Csqrt%7B29%7D%20%7D%20%2C%20%5Cfrac%7B2%7D%7B%5Csqrt%7B29%7D%20%7D%20%2C%20%5Cfrac%7B-4%7D%7B%5Csqrt%7B29%7D%20%7D%29)
now, we can find dot product to find direction of the vector
![dir=(gradf) \cdot (v')](https://tex.z-dn.net/?f=dir%3D%28gradf%29%20%5Ccdot%20%28v%27%29)
now, we can plug values
![dir=(50,-25,12) \cdot (\frac{-3}{\sqrt{29} } , \frac{2}{\sqrt{29} } , \frac{-4}{\sqrt{29} })](https://tex.z-dn.net/?f=dir%3D%2850%2C-25%2C12%29%20%5Ccdot%20%28%5Cfrac%7B-3%7D%7B%5Csqrt%7B29%7D%20%7D%20%2C%20%5Cfrac%7B2%7D%7B%5Csqrt%7B29%7D%20%7D%20%2C%20%5Cfrac%7B-4%7D%7B%5Csqrt%7B29%7D%20%7D%29)
![dir=(-\frac{150}{\sqrt{29} } - \frac{50}{\sqrt{29} } - \frac{48}{\sqrt{29} })](https://tex.z-dn.net/?f=dir%3D%28-%5Cfrac%7B150%7D%7B%5Csqrt%7B29%7D%20%7D%20-%20%5Cfrac%7B50%7D%7B%5Csqrt%7B29%7D%20%7D%20-%20%5Cfrac%7B48%7D%7B%5Csqrt%7B29%7D%20%7D%29)
.............Answer