Given:
Gasoline pumping rate, R = 5.64 x 10⁻² kg/s
Density of gasoline, D = 735 kg/m³
Radius of fuel line, r = 3.43 x 10⁻³ m
Calculate the cross sectional area of the fuel line.
A = πr² = π(3.43 x 10⁻³ m)² = 3.6961 x 10⁻⁵ m²
Let v = speed of pumping the gasoline, m/s
Then the mass flow rate is
M = AvD = (3.6961 x 10⁻⁵ m²)*(v m/s)*(735 kg/m³) = 0.027166v kg/s
The gasoline pumping rate is given as 5.64 x 10⁻² kg/s, therefore
0.027166v = 0.0564
v = 2.076 m/s
Answer: 2.076 m/s
The gasoline moves through the fuel line at 2.076 m/s.
The net force = sum of all forces acting on the body
If we take left side as -ve and right side as +ve,
then,
The net force here would be equal to,
10N + (- 3N)
= 7N.
Therefore, a net force of +7N ( + indicates it's moving towards right) is acting on the book of mass 2kg.
Answer:
Explanation:
Clinical Thermometer is meant for clinical purposes. It is developed for measuring the human body temperature. A laboratory thermometer, which is colloquially known as the lab thermometer, is used for measuring temperatures other than the human body temperature.
current in 3ohm resistor is 0.9
Explanation:
total
My educated guess : 21.2 deg