Well we know the hypotenuse of the triangle which is 253 m. And we know the angle of the triangle which is 55.8 degrees. So we want to find y. And to find y we use sin. And sin is a ratio, the ratio of the opposite leg, and hypotenuse. So sin(55.8) = y/253. Now we solve for y by multiplying both sides by 253. And finally we get 209.25 as the length of the y component.
6. Since we are not sure if the person in the question is actively lifting the crate, we have to determine the downwards force of the crate due to gravity and compare it to the normal force.
F = ma
F = (15.3)(-9.8)
F = -150N
Since the downwards force of the crate is equivalent to the normal force, it means the person is applying no force in picking up the object. So to pick up a 150N object from scratch, you would have to exert more force than the weight of the object, so the answer is 294N.
7. Same idea as question 2.
First determine the weight of the object:
F = ma
F = (30)(-9.8)
F = -294N
The crate in question is not moving, so the magnitudes of the forces in the upwards and downwards direction has to equal to 0.
-294 + 150N + x = 0
x = 144N
So the person is exerting 144 N.
10. First find the force of block B to the right due to its acceleration:
F = ma
F = (24)(0.5)
F = 12N
So block B is moving 12N to the right relative to block A due to block A's movement to the left. However, block A is being applied a much greater force and is moving quicker to the left than block B is moving to the right of bock A. The force that is causing block B to experience the lower relative force to the right is because of the friction. To find the friction:
The sum of the forces in the leftward and rightward direction for block B must equal 12N.
75 - x = 12
x = 63N
So the force of friction of block A on block B is 63N to the left.
In reality we don't see the galaxy we see it's reflection .. the light hits or got emitted by the star travel all the way long to hit our eyes .. we see their reflection . everything around you that you see is it's reflection
An independent variable is the variable that is changed or controlled in a scientific experiment to test the effects on the dependent variable. A dependent variable is the variable being tested and measured in a scientific experiment.
Answer:
Explanation:
Given that,
Mass of ball m = 2kg
Ball traveling a radius of r1= 1m.
Speed of ball is Vb = 2m/s
Attached cord pulled down at a speed of Vr = 0.5m/s
Final speed V = 4m/s
Let find the transverse component of the final speed using
V² = Vr²+ Vθ²
4² = 0.5² + Vθ²
Vθ² = 4²—0.5²
Vθ² = 15.75
Vθ =√15.75
Vθ = 3.97 m/s.
Using the conservation of angular momentum,
(HA)1 = (HA)2
Mb • Vb • r1 = Mb • Vθ • r2
Mb cancels out
Vb • r1 = Vθ • r2
2 × 1 = 3.97 × r2
r2 = 2/3.97
r2 = 0.504m
The distance r2 to the hole for the ball to reach a maximum speed of 4m/s is 0.504m
The required time,
Using equation of motion
V = ∆r/t
Then,
t = ∆r/Vr
t = (r1—r2) / Vr
t = (1—0.504) / 0.5
t = 0.496/0.5
t = 0.992 second