Answer:
W = N!/(n0! * n1!)
Explanation:
Let n0 = number of particles in the lowest energy state
n1 = number of particles in the excited energy state.
Using this, we can say that N = n0 + n1
From this we can then express the weight, W of the close system by finding the factorials of each particles
W = N!/(n0! * n1!)
Hence, the weight W is expressed as W = N!/(n0! * n1!)
Answer: The increase in temperature of the nail after the three blows is 8.0636 Kelvins. The correct option is (d).
Explanation:
Kinetic energy of the hammer ,K.E.=

Half of the kinetic energy of the hammer is transformed into heat in the nail.
Energy transferred to the nail in one blow =

Total energy transferred after 3 blows,Q =
Mass of the nail = 15 g = 0.015 kg
Change in temperature =
Specif heat of the steel = c = 448 J/kg K



The increase in temperature of the nail after the three blows is 8.1 Kelvins.Hence, correct option is (d).
Answer:
False
Explanation:
Faraday's law gives the relationship between the induced emf and the rate of change of magnetic flux i.e.

The given statement "A large magnetic flux change through a coil must induce a greater emf in the coil than a small flux change" is false. The reason is that if the rate of change of magnetic flux is greater, then its will induce more emf. It would mean it does not say about emf.
Hence, it is false.
Answer:
The answer is 576.0473
Explanation:
Hope this helps.
Please mark my answer as brainliest?