According to the model, the year will the population exceed 470 million is 2060
What is the first step to take?
The first step in this case is to use the model to compute the population figure in each year as shown below:
N = 3.21t + 277.3
Year 2020:
t=20
N = 3.21(20) + 277.3
N=341.50
Year 2025:
t=25
N = 3.21(25) + 277.3
N= 357.55
Year 2030:
t=30
N = 3.21(30) + 277.3
N=373.60
Year 2035:
t=35
N = 3.21(35) + 277.3
N= 389.65
Year 2060:
t=60
N = 3.21(60)+ 277.3
N= 469.90
Year 2065:
t=65
N = 3.21(65)+ 277.3
N= 485.95
Since all the years given do not give the correct year, let us equate the target population figure to the model and solve for t
470= 3.21t + 277.3
470-277.3=3.21t
192.70=3.21t
t=192.70/3.21
t=60.03(approximately 2060)
Find out more about population model on:brainly.com/question/25896797
#SPJ1
Step-by-step explanation:
S.A = 465
4πr²= 465
r². = 36.9
r. = 6.08
volume of a sphere = 4/3πr³
= 4/3π * 6.08³
= 941.8 cm³
Answer:
7x8
Step-by-step explanation:
none of those seem right
18 divided by 30 is 0.6. So I would say that B, or 0.6, is the correct answer.