According to Osmotic pressure equation:
π = i M R T
When π =0.307 atm & M = 0.01 mol & R (constant)= 0.0821 L-atom/mol-K &
T= 22+273 = 295 Kelvin
So Van't half vector i = π / (MRT)
= 0.307 / (0.01 * 0.0821 * 295)
= 1.27
When there is no dissociation, i = no. of moles of Hf in 1 L of solution = (1-X)
and when there is a complete dissociation so it is equal 2X according to this equation
HF(aq) + H2O (L) ⇆ H3O (aq) + F (aq)
(1-X) X X
∴ i = (1-X) + (2x)
1.27 = 1+X
∴X= 1.27 - 1 = 0.27
∴ the percent ionization of the acid X = 27 %
Some offspring may be tall, some may be short, and some may be medium medium sized.
Answer is B. gas formation
The decreasing order of wavelengths of the photons emitted or absorbed by the H atom is : b → c → a → d
Rydberg's formula :
,
where λ is the wavelength of the photon emitted or absorbed from an H atom electron transition from
to
and
= 109677 is the Rydberg Constant. Here
and
represents the transitions.
(a)
=2 to
= infinity
= 109677/4 [since 1/infinity = 0] Therefore,
= 4 / 109677 = 0.00003647 m
(b)
=4 to
= 20
= 6580.62
Therefore,
= 1 / 6580.62 = 0.000152 m
(c)
=3 to
= 10
= 11089.56
Therefore,
= 1 / 11089.56 = 0.00009 m
(d)
=2 to
= 1
= - 82257.75
Therefore,
= 1 /82257.75 = - 0.0000121 m
[Even though there is a negative sign, the magnitude is only considered because the sign denotes that energy is emitted.]
So the decreasing order of wavelength of the photon absorbed or emitted is b → c → a → d.
Learn more about the Rydberg's formula athttps://brainly.com/question/14649374
#SPJ4